Computer Science ›› 2018, Vol. 45 ›› Issue (8): 213-217.doi: 10.11896/j.issn.1002-137X.2018.08.038
• Artificial Intelligence • Previous Articles Next Articles
ZENG Zheng1, LI Li2, CHEN Jing3
CLC Number:
[1]IRSOY O,CARDIE C.Opinion Miningwith Deep RecurrentNeural Networks[C]∥Conference on Empirical Methods in Natural Language Processing.2014:720-728. [2]ZHOU X,WAN X,XIAO J.CMiner:Opinion Extraction andSummarization forChinese Microblogs[J].IEEE Transactions on Knowledge and Data Engineering,2016,28(7):1650-1663. [3]WEJ J,RUAN H,LI Z.Analysis of economic impact of onlinereviews:an approach for market-driven requirements evolution[M]∥Requirements.Springer Berlin Heidelberg:Engineering,2014:45-59. [4]SONG G,YE Y,DU X,et al.Short text classification:A survey[J].Journal of Multimedia,2014,9(5):635-643. [5]WANG B K,HUANG Y F,YANG W X,et al.Short text classification based on strong feature thesaurus[J].Frontiers of Information Technology & Electronic Engineering,2012,13(9):649-659. [6]KIM K,CHUNG B S,CHOI Y,et al.Language independent semantic kernels for short-text classification[J].Expert Systems with Applications,2014,41(2):735-743. [7]WANG M,LIN L,WANG F.Improving Short Text Classification through Better Feature Space Selection[C]∥International Conference on Computational Intelligence and Security.IEEE,2014:120-124. [8]FAN X,HU H.Construction of High-quality Feature Extension Mode Library for Chinese Short-text Classification[C]∥WASE International Conference on Information Engineering.IEEE,2010:87-90. [9]ZHANG X,WU B.ShortText Classification based on featureextension using The N-Grammodel[C]∥International Confe-rence on Fuzzy Systems & Knowledge Discovery.IEEE,2016:710-716. [10]HUANG P S,HE X,GAO J,et al.Learning deep structured semantic models for web search using clickthrough data[C]∥Acm International Conference on Conference on Information & Knowledge Management.ACM,2013:2333-2338. [11]SHEN Y,HE X,GAO J,et al.Alatent semantic model with con-volutional-pooling structure for information retrieval[C]∥International Conference on Conference on Information and Knowledge Management.ACM,2014:101-110. [12]KIM Y.Convolutional neural networks for sentence classification.arXiv preprint arXiv:1408.5882,2014. [13]MIKOLOV T,KARAFIÁT M,BURGET L,et al.Recurrentneural network based language model[C]∥INTERSPEECH 2010,Conference of the International Speech Communication Association.DBLP,2010:1045-1048. [14]MIKOLOV T.Statistical language models based on neural networks[OL].https://pdfs.semanticscholar.org/e753/714f98099e3da1e96c652d34cc45e315ad23.pdf. Accessed on Jan.2018. [15]WILLIAMS R J,ZIPSER D.Gradient-based learning algorithms for recurrent networks and their computational complexity.Backpropagation:Theory,Architectures,Andapplications,1995,1:433-486. [16]HOCHREITER S.The Vanishing Gradient Problem DuringLearning Recurrent Neural Nets and Problem Solutions[J].International Journal of Uncertainty,Fuzzinessand Knowledge-Based Systems,1998,6(2):107-116. [17]GUSTAVSSON A,MAGNUSON A,BLOMBERG B,et al.On the difficulty of training recurrent neural networks[J].Compu-ter Science,2013,52(3):337-345. [18]HOCHREITER S,SCHMIDHUBER J.Long short-term memory.Neural Computation,1997,9(8):1735-1780. [19]OLAH C.Understanding LSTMNetworks[OL].http://colah.github.io/posts/2015-08-Understanding-LSTMs. [20]GRAVES A,SCHMIDHUBER J.Framewise phoneme classification with bidirectional LSTM networks[C]∥IEEE International Joint Conference on Neural Networks,2005(IJCNN’05).IEEE,2005:2047-2052. [21]LIN M,CHEN Q,YAN S.Network In Network[J].arXiv.preprint arXiv?13120.4400,2013. [22]WU Y,SCHUSTER M,CHEN Z,et al.Google’s Neural Ma-chine Translation System:Bridging the Gap between Human and Machine Translation[J].arXiv preprint arXiv:1609.08144,2016. [23]HAWKINS D M.The Problem of Overfitting[J].Cheminform,2004,35(19):1-12. [24]HINTON G E,SRIVASTAVA N,KRIZHEVSKY A,et al.Improving neural networks by preventing co-adaptation of feature detectors[J].Computer Science,2012,3(4):212-223. [25]MAAS A L,DALY R E,PHAM P T,et al.Learning word vectors for sentiment analysis[C]∥Meeting of the Association for Computational Linguistics:Human Language Technologies.Association for Computational Linguistics,2011:142-150. [26]NAKOV P,RITTER A,Rosenthal S,et al.SemEval-2016 Task 4:Sentiment Analysis in Twitter[C]∥International Workshop on Semantic Evaluation.2016:1-18. [27]ANOOP V S,PREM S C.Generating and visualizing topichiera-rchies from microblogs:An iterative latent dirichlet allocation approach[C]∥2015 International Conference on Advances in Computing Communications and Informatics(ICACCI).2015:824-828. [28]LE Q V,MIKOLOV T.Distributed Representations of Sen-tences and Documents[J].ICML,2014,4(2):1188-1196. [29]DUCHI J,HAZAN E,SINGER Y.Adaptive subgradient methods for online learning and stochastic optimization[J].Journal of Machine Learning Research,2011,12(7):257-269. [30]ZEILER M D.Adadelta:an adaptive learning rate method[J].arXiv preprint arXiv:1212.5701,2012. [31]KINGMA D,BA J.Adam:amethod for stochastic optimization[J].arXiv preprint arXiv:1412.6980,2014. |
[1] | RAO Zhi-shuang, JIA Zhen, ZHANG Fan, LI Tian-rui. Key-Value Relational Memory Networks for Question Answering over Knowledge Graph [J]. Computer Science, 2022, 49(9): 202-207. |
[2] | TANG Ling-tao, WANG Di, ZHANG Lu-fei, LIU Sheng-yun. Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy [J]. Computer Science, 2022, 49(9): 297-305. |
[3] | XU Yong-xin, ZHAO Jun-feng, WANG Ya-sha, XIE Bing, YANG Kai. Temporal Knowledge Graph Representation Learning [J]. Computer Science, 2022, 49(9): 162-171. |
[4] | WANG Jian, PENG Yu-qi, ZHAO Yu-fei, YANG Jian. Survey of Social Network Public Opinion Information Extraction Based on Deep Learning [J]. Computer Science, 2022, 49(8): 279-293. |
[5] | HAO Zhi-rong, CHEN Long, HUANG Jia-cheng. Class Discriminative Universal Adversarial Attack for Text Classification [J]. Computer Science, 2022, 49(8): 323-329. |
[6] | JIANG Meng-han, LI Shao-mei, ZHENG Hong-hao, ZHANG Jian-peng. Rumor Detection Model Based on Improved Position Embedding [J]. Computer Science, 2022, 49(8): 330-335. |
[7] | SUN Qi, JI Gen-lin, ZHANG Jie. Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection [J]. Computer Science, 2022, 49(8): 172-177. |
[8] | HOU Yu-tao, ABULIZI Abudukelimu, ABUDUKELIMU Halidanmu. Advances in Chinese Pre-training Models [J]. Computer Science, 2022, 49(7): 148-163. |
[9] | ZHOU Hui, SHI Hao-chen, TU Yao-feng, HUANG Sheng-jun. Robust Deep Neural Network Learning Based on Active Sampling [J]. Computer Science, 2022, 49(7): 164-169. |
[10] | JIN Fang-yan, WANG Xiu-li. Implicit Causality Extraction of Financial Events Integrating RACNN and BiLSTM [J]. Computer Science, 2022, 49(7): 179-186. |
[11] | SU Dan-ning, CAO Gui-tao, WANG Yan-nan, WANG Hong, REN He. Survey of Deep Learning for Radar Emitter Identification Based on Small Sample [J]. Computer Science, 2022, 49(7): 226-235. |
[12] | ZHANG Yuan, KANG Le, GONG Zhao-hui, ZHANG Zhi-hong. Related Transaction Behavior Detection in Futures Market Based on Bi-LSTM [J]. Computer Science, 2022, 49(7): 31-39. |
[13] | HU Yan-yu, ZHAO Long, DONG Xiang-jun. Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification [J]. Computer Science, 2022, 49(7): 73-78. |
[14] | CHENG Cheng, JIANG Ai-lian. Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction [J]. Computer Science, 2022, 49(7): 120-126. |
[15] | ZHU Wen-tao, LAN Xian-chao, LUO Huan-lin, YUE Bing, WANG Yang. Remote Sensing Aircraft Target Detection Based on Improved Faster R-CNN [J]. Computer Science, 2022, 49(6A): 378-383. |
|