Computer Science ›› 2018, Vol. 45 ›› Issue (10): 6-10.doi: 10.11896/j.issn.1002-137X.2018.10.002
• CGCKD 2018 • Previous Articles Next Articles
XING Ying1, LI De-yu1,2, WANG Su-ge1,2
CLC Number:
[1]LI H X,ZHOU X Z,HUANG B,et al.Cost-sensitive three-way decision:a sequential strategy[C]∥International Conference on Rough Sets and Knowledge Technology.Berlin:Springer,2013:325-337. [2]ZHANG Y P,ZOU H J,CHEN X,et al.Cost-sensitive three-way decisions model based on CCA[C]∥International Confe-rence on Rough Sets and Current Trends in Computing.Switzerland:Springer,2014,8536:172-180. [3]JIAO X Y,TANG Z M,LIAO W H,et al.Minimum cost attri- bute reduction in decision-theoretic rough set models[J].Information Sciences,2013,219(1):151-167. [4]YANG X B,QI Y S,SONG X N,et al.Test cost sensitive multigranulation rough set:model and minimal cost selection[J].Information Sciences,2013,250(11):184-199. [5]LI H X,ZHOU X Z,ZHAO J B,et al.Cost-sensitive classification based on decision-theoretic rough set model[C]∥International Conference on Rough Sets and Knowledge Technology.Springer-Verlag,2012:379-388. [6]JU H R,LI H X,YANG X B,et al.Cost-sensitive rough set:a multi-granulation approach[J].Knowledge-Based Systems,2017,123(9):137-153. [7]DOU H L,YANG X B,SONG X N,et al.Decision-theoretic rough set:a multicost strategy[J].Knowledge-Based Systems,2016,91(1):71-83. [8]JU H R,YANG X B,YU H L,et al.Cost-sensitive rough set approach[J].Information Sciences,2016,355-356(C):282-298. [9]MIN F,LIU Q H.A hierarchical model for test-cost-sensitive decision systems[J].Information Sciences,2009,179(14):2442-2452. [10]YAO Y Y,WONG S K M,LINGRAS P.A decision-theoretic rough set model[C]∥Proceedings of ISMIS.1990:17-25. [11]YAO Y Y,WONG S K M.A decision theoretic framework for approximating concepts[J].International Journal of Man-Machine Studies,1992,37(6):793-809. [12]YAO Y Y.The superiority of three-way decisions in probabilistic rough set models[J].Information Sciences,2011,181(6):1080-1096. [13]JIA X Y,LIAO W H,TANG Z M,et al.Minimum cost attribute reduction in decision-theoretic rough set models[J].Information Sciences,2013,219(1):151-167. [14]YAO Y Y.An outline of a theory of three-way decisions[C]∥International Conference on Rough Sets and Current Trends in Computing.Springer,2012:1-17. [15]YAO Y Y.Three-way decisions with probabilistic rough sets[J].Information Sciences,2010,180(3):341-353. [16]YAO Y Y.The superiority of three-way decisions in probabilistic rough set models[J].Information Sciences,2011,181(6):1080-1096. [17]YAO Y Y.Probabilistic approaches to rough sets[J].Expert Systems,2003,20(5):287-297. [18]YAO Y Y.Three-way decision:an interpretation of rules in rough set theory[C]∥International Conference on Rough Sets and Knowledge Technology.Springer-Verlag,2009:642-649. [19]YAO Y Y,DENG X F.Sequential three-way decisions with probabilistic rough sets[J].Information Sciences,2010,180(3):341-353. [20]YAO Y Y.Granular computing and sequential three-way decisions[C]∥International Conference on Rough Sets and Know-ledge Technology.Berlin:Springer,2013,8171:16-27. [21]刘盾,李天瑞,苗夺谦,等.三支决策与粒计算[M].北京:科学出版社,2013:43-47. [22]YANG X B,LI T R,FUJITA H,et al.A unified model of sequential three-way decisions and multilevel incremental proces-sing[J].Knowledge-Based Systems,2017,134(20):172-188. |
[1] | QIN Qi-qi, ZHANG Yue-qin, WANG Run-ze, ZHANG Ze-hua. Hierarchical Granulation Recommendation Method Based on Knowledge Graph [J]. Computer Science, 2022, 49(8): 64-69. |
[2] | ZHANG Yuan, KANG Le, GONG Zhao-hui, ZHANG Zhi-hong. Related Transaction Behavior Detection in Futures Market Based on Bi-LSTM [J]. Computer Science, 2022, 49(7): 31-39. |
[3] | YANG Fei-fei, SHEN Si-yu, SHEN De-rong, NIE Tie-zheng, KOU Yue. Method on Multi-granularity Data Provenance for Data Fusion [J]. Computer Science, 2022, 49(5): 120-128. |
[4] | LI Jing-tai, WANG Xiao-dan. XGBoost for Imbalanced Data Based on Cost-sensitive Activation Function [J]. Computer Science, 2022, 49(5): 135-143. |
[5] | WANG Zi-yin, LI Lei-jun, MI Ju-sheng, LI Mei-zheng, XIE Bin. Attribute Reduction of Variable Precision Fuzzy Rough Set Based on Misclassification Cost [J]. Computer Science, 2022, 49(4): 161-167. |
[6] | HUANG Ying-qi, CHEN Hong-mei. Cost-sensitive Convolutional Neural Network Based Hybrid Method for Imbalanced Data Classification [J]. Computer Science, 2021, 48(9): 77-85. |
[7] | WANG Dong, ZHOU Da-ke, HUANG You-da , YANG Xin. Multi-scale Multi-granularity Feature for Pedestrian Re-identification [J]. Computer Science, 2021, 48(7): 238-244. |
[8] | LI Yan, FAN Bin, GUO Jie, LIN Zi-yuan, ZHAO Zhao. Attribute Reduction Method Based on k-prototypes Clustering and Rough Sets [J]. Computer Science, 2021, 48(6A): 342-348. |
[9] | WANG Zheng, JIANG Chun-mao. Cloud Task Scheduling Algorithm Based on Three-way Decisions [J]. Computer Science, 2021, 48(6A): 420-426. |
[10] | LYU Le-bin, LIU Qun, PENG Lu, DENG Wei-bin , WANG Chong-yu. Text Matching Fusion Model Combining Multi-granularity Information [J]. Computer Science, 2021, 48(6): 196-201. |
[11] | DING Ling, XIANG Yang. Chinese Event Detection with Hierarchical and Multi-granularity Semantic Fusion [J]. Computer Science, 2021, 48(5): 202-208. |
[12] | ZHOU Xiao-jin, XU Chen-ming, RUAN Tong. Multi-granularity Medical Entity Recognition for Chinese Electronic Medical Records [J]. Computer Science, 2021, 48(4): 237-242. |
[13] | CHEN Zhuo, WANG Guo-yin, LIU Qun. Natural Scene Text Detection Algorithm Combining Multi-granularity Feature Fusion [J]. Computer Science, 2021, 48(12): 243-248. |
[14] | ZENG Hui-kun, MI Ju-sheng, LI Zhong-ling. Dynamic Updating Method of Concepts and Reduction in Formal Context [J]. Computer Science, 2021, 48(1): 131-135. |
[15] | SANG Bin-bin, YANG Liu-zhong, CHEN Hong-mei, WANG Sheng-wu. Incremental Attribute Reduction Algorithm in Dominance-based Rough Set [J]. Computer Science, 2020, 47(8): 137-143. |
|