Computer Science ›› 2018, Vol. 45 ›› Issue (11): 1-12.doi: 10.11896/j.issn.1002-137X.2018.11.001

• Surveys •     Next Articles

Communication and Networking Techniques for Formation Control in UAV Ad Hoc Networks

CHENG Xiao1, DONG Chao2, CHEN Gui-hai1, WANG Wei-jun1, DAI Hai-peng1   

  1. (Department of Computer Science and Technology,Nanjing University,Nanjing 210023,China)1
    (College of Electronic and Information Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China)2
  • Received:2018-01-07 Published:2019-02-25

Abstract: With the development of technology,the research on the collaboration of multi-UAV (Unmanned Aerial Vehicle) systems gains increasing attention.As a key technique for the collaboration of multiple UAVs,formation control brings huge challenges to the communication and networking techniques for UAV ad hoc networks featuring dynamic channel and topology.Firstly,the related models of the formation control in UAV ad hoc networks were introduced.Then,from the aspects of formation keeping and reconfiguration,mission update,reliability,etc.,five formation control strategies and their requirements of the communication and networking techniques for UAV ad hoc networks were surveyed and analyzed.Finally,the research prospects and directions of the communication and networking technologies in UAV ad hoc networks were proposed.

Key words: Ad hoc network, Communication and networking, Formation control, Unmanned aerial vehicle

CLC Number: 

  • V279
[1]GUPTA L,JAIN R,VASZKUN G.Survey of Important Issues in UAV Communication Networks[J].IEEE Communications Surveys & Tutorials,2016,18(2):1123-1152.
[2]BEKMEZCI I,SAHINGOZ O K,TEMEL S.Flying Ad-Hoc Networks (FANETs):A survey[J].Ad Hoc Networks,2013,11(3):1254-1270.
[3]SEMSCH E,JAKOB M,PAVLICEK D,et al.Autonomous UAV Surveillance in Complex Urban Environments[C]∥IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology.Milan,Italy,2009:82-85.
[4]CASBEER D W,BEARD R W,MCLAIN T W,et al.Forest Fire Monitoring with Multiple Small UAVs[C]∥Proceedings of the 2005 American Control Conference.Portland,OR,USA,2005:3530-3535.
[5]CASBEER D W,KINGSTON D B,BEARD R W,et al.Cooperative forest fire surveillance using a team of small unmanned air vehicles[J].International Journal of Systems Science,2006,37(6):351-360.
[6]TOMIC T,SCHMID K,LUTZ P,et al.Toward a fully autonomous UAV:Research platform for indoor and outdoor urban search and rescue[J].IEEE Robotics & Automation Magazine,2012,19(3):46-56.
[7]BUPE P,HADDAD R,RIOS-GUTIERREZ F.Relief and Emergency Communication Network based on an Autonomous Decentralized UAV Clustering Network[C]∥Southeast Con 2015.FL,USA,2015:1-8.
[8]LIAO F,TEO R,WANG J L,et al.Distributed Formation and Reconfiguration Control of VTOL UAVs[J].IEEE Transactions on Control Systems Technology,2017,25(1):270-277.
[9]LAFFERRIERE G,WILLIANMS A,CAUGHMAN J,et al. Decentralized control of vehicle formations[J].Systems & Control Letters,2005,54(9):899-910.
[10]BEARD R W,LAWTON J,HADAEGH F Y.A Coordination Architecture for Spacecraft Formation Control[J].IEEE Tran-sactions on Control Systems Technology,2001,9(6):777-790.
[11]DUAN H,LUO Q,MA G,et al.Hybrid Particle Swarm Optimization and Genetic Algorithm for Multi-UAV Formation Reconfiguration[J].IEEE Computational Intelligence Magazine,2013,8(3):16-27.
[12]SEO J,KIM Y,KIM S,et al.Consensus-based reconfigurable controller design for unmanned aerial vehicle formation flight[J].Journal of Aerospace Engineering,2012,226(7):817-829.
[13]LI X,ZHANG X,LIU H,et al.Formation Reconfiguration Based on Distributed Cooperative Coevolutionary for Multi-UAV[C]∥12th World Congress on Intelligent Control and Automation.Guilin,China,2016:2308-2311.
[14]HAYAT S,YANMAZ E,MUZAFFAR R.Survey on Un- manned Aerial Vehicle Networks for Civil Applications:A Communications Viewpoint[J].IEEE Communications Surveys &Tutorials,2016,18(4):2624-2661.
[15]XIE J,WAN Y,KIM J H,et al.A Survey and Analysis of Mo- bility Models for Airborne Networks[J].IEEE Communications Surveys & Tutorials,2014,16(3):1221-1238.
[16]JAFARIAN M,PERSIS C D.Formation control using binary information[J].Automatica,2015,53:125-135.
[17]WANG G,LUO H,HU X,et al.Fault-tolerant communication topology management based on minimum cost arborescence for leader-follower UAV formation under communication faults[J].International Journal of Advanced Robotic Systems,2017,14(2):1-17.
[18]YANG H,JIANG B,ZHANG Y.Fault-tolerant Shortest Con- nection Topology Design for Formation Control[J].Internatio-nal Journal of Control,Automation and Systems,2014,12(1):29-36.
[19]OH K K,PARK M C,AHN H S.A survey of multi-agent formation control[J].Automatica,2015,53:424-440.
[20]LIU S,XIE L,ZHANG H.Distributed consensus for multi- agent systems with delays and noises in transmission channels[J].Automatica,2011,47(5):920-934.
[21]ZHOU J,WANG Q.Convergence speed in distributed consensus over dynamically switching random networks[J].Automatica,2009,45(6):1455-1461.
[22]NI W,CHENG D.Leader-following consensus of multi-agent systems under fixed and switching topologies[J].Systems & Control Letters,2010,59(3):209-217.
[23]LIU C L,TIAN Y P.Formation control of multi-agent systems with heterogeneous communication delays[J].International Journal of Systems Science,2009,40(6):627-636.
[24]OLFATI-SABER R,MURRAY R M.Consensus problems in networks of agents with switching topology and time-delays[J].IEEE Transactions on Automatic Control,2004,49(9):1520-1533.
[25]LIU Y,JIA Y.Robust formation control of discrete-time multi-agent systems by iterative learning approach[J].International Journal of Systems Science,2015,46(4):625-633.
[26]MEI Q,YAO P Y.An Overview of Consensus-Based Formation Control for Multi-Agent System[J].Electronics Optics & Control,2017,24(1):54-57.(in Chinese)
梅权,姚佩阳.一致性 Multi-Agent 编队控制综述[J].电光与控制,2017,24(1):54-57.
[27]WANG P,YAO P Y.Method of Distributed UAVs Formation with Time-delay[J].Computer Measurement & Control,2016,24(9):181-183.(in Chinese)
[28]ZONG Q,WANG D D,SHAO S K,et al.Research status and development of multi UAV coordinated formation flight control[J].Journal of Harbin Institute of Technology,2017,49(3):1-14.(in Chinese)
[29]LI W,CHEN J.Review and Prospect of Cooperative Combat of Manned/Unmanned Aerial Vehicle Hybrid Formation[J].Aerospace Control,2017,35(3):90-96.(in Chinese)
[30]LI X M,BO N,DAI J J,et al.Survey on Key Techniques of the Collaborative Operational Command and Control of Manned/Unmanned Aerial Vehicle Formation[J].Aerodynamic Missile Journal,2017(9):29-35.(in Chinese)
[31]JIAO L G,SHI P F,WEI W L.Research on Fuzzy PID Control of UAV Formation Flight[J].Computer Simulation,2015,32(9):66-71.(in Chinese)
[32]WANG X,ZHANG D B,SHEN L C.A Virtual Force Based Path Following Approach for Unmanned Aerial Vehicles[J].Robot,2016,38(3):329-336.(in Chinese)
[33]WANG P,YAO P Y,MEI Q,et al.Distributed formation control method of UAVs based on flocking[J].Flight Dynamics,2016,34(2):42-46.(in Chinese)
[34]HAO B,QIN L J,WENG Z F.Research on Formation Control for Hybrid Multi-robot Based on Leader-Follower[J].Fire Control & Command Control,2011,36(4):5-7.(in Chinese)
[35]ZHANG J X,ZHANG M.Design of Leader-Follower Formation Controller for Nonholonomic Mobile Robots[J].Intelligent Computer and Applications,2011,1(6):20-22.(in Chinese)
张金学,掌明.非完整机器人Leader-follower 编队控制器设计[J].智能计算机与应用,2011,1(6):20-22.
[36]DONG X,YU B,SHI Z,et al.Time-Varying Formation Control for Unmanned Aerial Vehicles:Theories and Applications[J].IEEE Transactions on Control Systems Technology,2015,23(1):340-348.
[37]SEN A,SAHOO S R,KOTHARI M.Cooperative Target-centric Formation Control without Relative Velocity Measurements under Heterogeneous Networks[J].Journal of Intelligent and Robotic Systems:Theory and Applications,2017,87(3/4):683-698.
[38]REN C E,CHEN L,CHEN P C L.Adaptive Fuzzy Leader-Following Consensus Control for Stochastic Multiagent Systems with Heterogeneous Nonlinear Dynamics[J].IEEE Transactions on Fuzzy Systems,2017,25(1):181-190.
[39]WANG X,ZENG Z,CONG Y.Multi-agent distributed coordination control:Developments and directions via graph viewpoint[J].Neurocomputing,2016,199:204-218.
[40]BRANDAO A S,BARBOSA J P A,MENDOZA V,et al.A Multi-Layer Control Scheme for a Centralized UAV Formation[C]∥International Conference on Unmanned Aircraft Systems.Orlando,FL,USA,2014:1181-1187.
[41]KESHMIRI S,PAYANDEH S.A Centralized Framework to Multi-robots Formation Control:Theory and Application[M]∥Collaborative Agents-Research and Development.Springer Berlin Heidelberg,2011:85-98.
[42]REN W,ATKINS E.Distributed multi-vehicle coordinated control via local information exchange[J].International Journal of Robust and Nonlinear Control,2007,17(10/11):1002-1033.
[43]DONG W,FARRELL J A.Consensus of multiple nonholonomic systems[C]∥Proceedings of the 47th IEEE Conference on Decision and Control.Cancun,Mexico,2008:2270-2275.
[44]DONG W,FARRELL J A.Cooperative control of multiple nonholonomic mobile agents[J].IEEE Transactions on Automatic Control,2008,53(6):1434-1448.
[45]WEN W,DUAN Z,REN W,et al.Distributed consensus of multi-agent systems with general linear node dynamics and intermittent communications[J].International Journal of Robust and Nonlinear Control,2014,24(16):2438-2457.
[46]DIMAROGONAS D V,KYRIAKOPOULOS K J.A connection between formation infeasibility and velocity alignment in kinematic multi-agent systems[J].Automatica,2008,44(10):2648-2654.
[47]LIN Z,FRANCIS B A,MAGGIORE M.Necessary and suffi- cient graphical conditions for formation control of unicycles[J].IEEE Transactions on Automatic Control,2005,50(1):121-127.
[48]OH K K,AHN H S.Distance-based control of cycle-free persistent formations[C]∥Proceedings of the 2011 IEEEInternatio-nal Symposium on Intelligent Control.Denver,CO,USA,2011:816-821.
[49]OH K K,AHN H S.Distance-based formation control using Euclidean distance dynamics matrix:general cases[C]∥Procee-dings of the 2011 American Control Conference.CA,USA,2011:4816-4821.
[50]OH K K,AHN H S.Formation control of mobile agents based on inter-agent distance dynamics[J].Automatica,2011,47(10):2306-2312.
[51]REN C E,CHEN L,CHEN C L P.Adaptive Fuzzy Leader-Following Consensus Control for Stochastic Multiagent Systems with Heterogeneous Nonlinear Dynamics[J].IEEE Transactions on Fuzzy Systems,2017,25(1):181-190.
[52]HAFEZ A T,KAMEL M A.Fault-tolerant control for coopera- tive unmanned aerial vehicles formation via fuzzy logic[C]∥2016 International Conference on Unmanned Aircraft Systems (ICUAS).Arlington,VA,USA,2016:1261-1266.
[53]LIN Z,LIU H H.Consensus based on learning game theory with a UAV rendezvous application[J].Chinese Journal of Aeronautics,2015,28(1):191-199.
[54]KIM D H,WANG H,SHIN S.Decentralized control of autonomous swarm systems using artificial potential functions:Analy-tical design guidelines[J].Journal of Intelligent and Robotic Systems,2006,45(4):369-394.
[55]RASCHE C,STERN C,KLEINJOHANN L,et al.A Distributed Multi-UAV Path Planning Approach for 3D Environments[C]∥The 5th International Conference on Automation,Robo-tics and Applications.Wellington,New Zealand,2011:7-12.
[56]ZHU B,ZAINI A H B,XIE L.Distributed guidance for inter- ception by using multiple rotary-wing unmanned aerial vehicles[J].IEEE Transactions on Industrial Electronics,2017,64(7):5648-5656.
[57]FU Y,WANG X K,HUAN L,et al.Multi-UAV formation control method based on modified artificial physics[C]∥Control and Decision Conference (CCDC).Yinchuan,China,2016:2523-2529.
[58]FU Y,WANG X K,HUAN L,et al.Multi-UAV Formation Control Method Based on Modified Artificial Physics[C]∥Control and Decision Conference.Lijiang,China,2016:2523-2529.
[59]ZHOU Y,DONG X,ZHONG Y.Time-varying formation tra- cking for UAV swarm systems with switching interaction topo-logies[C]∥Chinese Control Conference.Chengdu,China,2016:7658-7665.
[60]HOU Z,FANTONI I.Distributed leader-follower formation control for multiple quadrotors with weighted topology[C]∥10th System of Systems Engineering Conference.San Antonio,Texas,USA,2015:256-261.
[61]DEHGHANI M A,MENHAJ M B.Communication free leader-follower formation control of unmanned aircraft systems[J].Robotics and Autonomous Systems,2016,80:69-75.
[62]GALZI D,SHTESSEL Y.UAV Formations Control Using High Order Sliding Modes[C]∥Proceedings of the 2006 American Control Conference Minneapolis.Minneapolis,Minnesota,USA,2006:4250-4254.
[63]ZHANG H,ZHAO G,XU G.Time-Optimal Control for Formation Reconfiguration of Multiple Unmanned Aerial Vehicles[C]∥Proceedings of the 35th Chinese Control Conference.Chengdu,China,2016:5630-5635.
[64]LIU T,JIANG Z P.Distributed formation control of nonholonomic mobile robots without global position measurements[J].Automatica,2013,49(2):592-600.
[65]SADOWSKA A,HUIJBERTS H,NIJMEIJER H,et al.A vir- tual structure approach to formation control of unicycle mobile robots using mutual coupling[J].International Journal of Control,2011,84(11):1886-1902.
[66]KIM S,KIM Y.Three Dimensional Optimum Controller for Multiple UAV Formation Flight Using Behavior-based Decentralized Approach[C]∥International Conference on Control,Automation and Systems.COEX,Seoul,Korea,2007:1387-1392.
[67]REN W,BEARD R W.Decentralized Scheme for Spacecraft Formation Flying via the Virtual Structure Approach[J].Journal of Guidance,Control,and Dynamics,2004,27(1):73-82.
[68]LI N H M,LIU H H T.Formation UAV Flight Control using Virtual Structure and Motion Synchronization[C]∥American Control Conference.Seattle,Washington,USA,2008:1-19.
[69]PETERSON C K,BARTON J.Virtual structure formations of cooperating UAVs using wind-compensation command generation and generalized velocity obstacles[C]∥IEEE Aerospace Conference.MT,USA,2015:1-7.
[70]SHAO Z,ZHU X P,ZHOU Z,et al.Distributed formation kee- ping control of UAVs in 3-D dynamicenvironment[J].Control and Decision,2016,31(6):1065-1072.(in Chinese)
[71]YUAN J,TAGN G Y.Formation control of autonomous underwater vehicles with consensus algorithms and virtual structure[J].CAAI Transactions on Intelligent Systems,2011,6(3):248-253.(in Chinese)
[72]CAI D,SUN J,WU S.UAVs Formation Flight Control Based on Behavior and Virtual Structure[J].Communications in Computer and Information Science,2012,325(3):429-438.
[73]REN W,BEARD R W,ATKINS E M.A Survey of Consensus Problems in Multi-agent Coordination[C]∥American Control Conference.Portland,OR,USA,2005:1859-1864.
[74]SU S,LIN Z.Distributed Consensus Control of Multi-Agent Systems With Higher Order Agent Dynamics and Dynamically Changing[J].IEEE Transactions on Automatic Control,2016,61(2):515-519.
[75]REN W.Consensus strategies for cooperative control of vehicle formations[J].IET Control Theory & Applications,2007,1(2):505-512.
[76]VEGA-ALONZO A,GUERRERO-CASTELLANOS J F,DU- RAND S,et al.Event-based control strategy for consensus of a group of VTOL-UAVs[C]∥Proceedings of the 2nd International Conference on Event-Based Control,Communication,and Signal Processing.Krakow,Poland,2016:1-8.
[77]DING Y,WEI C,BAO S Y.Formation control for multiple UAVs with time delay based on consensus algorithm[J].Journal of Computer Applications,2014,34(S1):151-155.(in Chinese)
[78]ZHU X,ZHANG X X,YAN M D,et al.UAV Formation Control Strategy Based on Consensus[J].Computer Simulation,2016,33(8):30-34.(in Chinese)
[79]XIONG T,CAO K C,CHAI Y,et al.Consensus Algorithm with Input Constraint based Formation Control for Multiple UAVs[J].Computer Engineering and Applications,2018,54(12):1-8.(in Chinese)
[80]ANTONELLI G,ARRICHIELLO F,CACCAVALE F,et al. Decentralized time-varying formation control for multi-robot systems[J].The International Journal of Robotics Research,2014,33(7):1029-1043.
[81]BALCH T,ARKIN R C.Behavior-Based Formation Control for Multi-robot Teams[J].IEEE Transactions on Robotics and Automation,1998,14(6):926-939.
[82]BANDALA A A,VICERRA P R R,DADIOS E P.Formation Stabilization Algorithm for Swarm Tracking in Unmanned Ae-rial Vehicle (UAV) Quadrotors[C]∥IEEE Region 10 Annual International Conference on TENCON.Bangkok,Thailand,2015:1-6.
[83]BANDALA A A,DADIOS E P,VICERRA P R R,et al.Swarm Behavior for Aggregation,Foraging,Formation,and Tracking[J].Journal of Advanced Computational Intelligence and Intelligent Informatics,2014,18(5):745-751.
[84]MA Z,NIU Y,SHEN L.Vision-Based Behavior for UAV Reactive Avoidance by using a Reinforcement Learning Method[C]∥Proceedings of the World Congress on Intelligent Control and Automation.Guilin,China,2016.
[85]QIU H X,DUAN H B,FAN Y M.Multiple Unmanned Aerial Vehicle Autonomous Formation based on the Behavior Mechanism in Pigeon Flocks[J].Control Theory & Applications,2015,32(10):1298-1304.(in Chinese)
[86]WANG P,YAO P Y,MEI Q,et al.Distributed Formation Control Method of UAVs based on Flocking[J].Flight Dynamics,2016,34(2):42-46.(in Chinese)
[87]KURIKI Y,NAMERIKAWA T.Consensus-based Cooperative Formation Control with Collision Avoidance for a Multi-UAV System[C]∥American Control Conference.Portland,Oregon,USA,2014:2077-2082.
[88]LIU M.UAV integrated navigation system under GPS failure[J].Journal of University of Jinan (Science & Technology),2015,29(2):129-132.(in Chinese)
柳明.GPS 失效下的无人机组合导航系统[J].济南大学学报(自然科学版),2015,29(2):129-132.
[89]VANEGAS F,DUNCAN C,EICH M,et al.UAV Based Target Finding and Tracking in GPS-Denied and Cluttered Environments[C]∥IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).2016:2307-2313.
[90]KIM H J,KWON J W,SEO J.Multi-UAV-Based Stereo Vision System without GPS for Ground Obstacle Mapping to Assist Path Planning of UGV[J].Electronics Letters,2014,50(20):1431-1432.
[91]HONG Y,HUANG W,CHIU F,et al.Cooperative communications in resource-constrained wireless networks[J].IEEE Signal Processing Magazine,2007,24(3):47-57.
[92]DECHTER R.Constraint Networks[J].Artificial Intelligence,1992,49(89):61-95.
[93]CHI T Z,CHENG H,PAGE J R,et al.Evolving Swarm of UAVs[J].Advances in Aircraft and Spacecraft Science,2014,1(2):219-232.
[94]WANG X H,DUAN H B.Biologically adaptive robust mean shift algorithm with Cauchy predator-prey BBO and space va-riant resolution for unmanned helicopter formation[J].Science China Information Sciences,2014,57(11):1-13.
[95]DUAN H,LI P.Bio-inspired Computation in Unmanned Aerial Vehicles[M].Berlin Heidelberg:Springer,2014.
[96]BUSONIU L,BABUSKA R,SCHUTTER B D.A Comprehensive Survey of Multiagent Reinforcement Learning[J].IEEE Transactions on Systems,Man,and Cybernetics-Part C:Applications and Reviews,2008,38(2):156-172.
[97]ZENG Y,GUIXIANG W,BO X.A Basal Ganglia Network Centric Reinforcement Learning Model and Its Application in Unmanned Aerial Vehicle[J].IEEE Transactions on Cognitive and Developmental Systems,2018,10(2):290-303.
[1] JIAN Qi-rui, CHEN Ze-mao, WU Xiao-kang. Authentication and Key Agreement Protocol for UAV Communication [J]. Computer Science, 2022, 49(8): 306-313.
[2] LIU Zhang-hui, ZHENG Hong-qiang, ZHANG Jian-shan, CHEN Zhe-yi. Computation Offloading and Deployment Optimization in Multi-UAV-Enabled Mobile Edge Computing Systems [J]. Computer Science, 2022, 49(6A): 619-627.
[3] XIE Wan-cheng, LI Bin, DAI Yue-yue. PPO Based Task Offloading Scheme in Aerial Reconfigurable Intelligent Surface-assisted Edge Computing [J]. Computer Science, 2022, 49(6): 3-11.
[4] SHI Dian-xi, LIU Cong, SHE Fu-jiang, ZHANG Yong-jun. Cooperation Localization Method Based on Location Confidence of Multi-UAV in GPS-deniedEnvironment [J]. Computer Science, 2022, 49(4): 302-311.
[5] ZHANG Geng-qiang, XIE Jun, YANG Zhang-lin. Accelerating Forwarding Rules Issuance with Fast-Deployed-Segment-Routing(FDSR) in SD-MANET [J]. Computer Science, 2022, 49(2): 377-382.
[6] CHENG Zhao-wei, SHEN Hang, WANG Yue, WANG Min, BAI Guang-wei. Deep Reinforcement Learning Based UAV Assisted SVC Video Multicast [J]. Computer Science, 2021, 48(9): 271-277.
[7] XU Hao, LIU Yue-lei. UAV Sound Recognition Algorithm Based on Deep Learning [J]. Computer Science, 2021, 48(7): 225-232.
[8] YANG Zhang-lin, XIE Jun, ZHANG Geng-qiang. Review of Directional Routing Protocols for Flying Ad-Hoc Networks Based on Directional Antennas [J]. Computer Science, 2021, 48(11): 334-344.
[9] YI Meng, LIANG Jia-rong, QIN Bin. Approximate Algorithm for Minimum Virtual Backbone in 3D Wireless Ad Hoc Networks [J]. Computer Science, 2020, 47(7): 250-256.
[10] XIONG Ling, LI Fa-gen, LIU Zhi-cai. Conditional Privacy-preserving Authentication Scheme Based on Blockchain for Vehicular Ad Hoc Networks [J]. Computer Science, 2020, 47(11): 55-59.
[11] HUANG De-ling,YAN Yu-song,PENG Da-qin. Geographic Routing Protocol Based on Prediction for Urban Vehicular Ad Hoc Networks [J]. Computer Science, 2019, 46(7): 74-80.
[12] WANG Nan, SUN Shan-wu. UAV Fault Recognition Based on Semi-supervised Clustering [J]. Computer Science, 2019, 46(6A): 192-195.
[13] WANG Qing-long, QIAO Rui, DUAN Zong-tao. Security Analysis on VANETs Authentication Schemes:CPAV and ABV [J]. Computer Science, 2019, 46(4): 177-182.
[14] HAN Bing-qing, CHEN Yi-fei. Heterogeneous Chain Dominating Set Algorithm in Wireless Ad Hoc Networks [J]. Computer Science, 2018, 45(9): 135-140.
[15] HUO Shi-wei,ANG Wen-jing,LI Jing-zhi,SHEN Jin-shan. New Identity-based Authentication and Key Agreement Scheme in Ad hoc Networks [J]. Computer Science, 2018, 45(6A): 380-382.
Full text



No Suggested Reading articles found!