Computer Science ›› 2019, Vol. 46 ›› Issue (1): 64-72.doi: 10.11896/j.issn.1002-137X.2019.01.010
• CCDM2018 • Previous Articles Next Articles
QIN Yi-xiu1, WEN Yi-min1,2, HE Qian1
CLC Number:
[1]SCHLIMMER J C,GRANGER R H.Incremental Learning from Noisy Data[J].Machine Learning,1986,1(3):317-354.<br /> [2]HULTEN G,SPENCER L,DOMINGOS P.Mining time-changing data streams[C]//Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM,2001:97-106.<br /> [3]KOLTER J Z,MALOOF M A.Dynamic weighted majority:a new ensemble method for tracking concept drift[C]//Procee-dings of the IEEE Conference on Data Mining.Piscataway:IEEE,2003:123-130.<br /> [4]JR P M G,BARROS R S M D.RCD:A recurring concept drift framework[J].Pattern Recognition Letters,2013,34(9):1018-1025.<br /> [5]LI P,WU X,HU X.Mining recurring concept drifts with limited labeled streaming data[C]//Proceedings of the 2nd Asian Conference on Machine Learning.New York:ACM,2010:241-252.<br /> [6]ZHAO P,HOI S C H,WANG J,et al.Online Transfer Learning[J].Journal of Artificial Intelligence,2014,216(16):76-102.<br /> [7]WEN Y M,TANG S Q,FENG C,et al.Online Transfer Learning for Mining Recurring Concept in Data Stream Classification[J].Journal of Computer Research and Development,2016,53(8):1781-1791.(in Chinese)<br /> 文益民,唐诗淇,冯超,等.基于在线迁移学习的重现概念漂移数据流分类[J].计算机研究与发展,2016,53(8):1781-1791.<br /> [8]WEN Y M,QIANG B H,FAN Z G.A survey of the classification of data streams with concept drift[J].CAAI Transactions on Intelligent Systems,2013,8(2):95-104.(in Chinese)<br /> 文益民,强保华,范志刚.概念漂移数据流分类研究综述[J].智能系统学报,2013,8(2):95-104.<br /> [9]ZLIOBAITE I,PECHENIZKIY M,GAMA J.An overview of concept drift applications[J].Studies in Big Data,2016,16(1):91-114.<br /> [10]KRAWCZYK B,MINKU L L,GAMA J,et al.Ensemble learning for data stream analysis:A survey[J].Information Fusion,2017,37(C):132-156.<br /> [11]GAMA J,ZLIOBAITE I,BIFET A,et al.A survey on concept drift adaptation[J].ACM Computing Surveys (CSUR),2014,46(4):1-37.<br /> [12]CASTILLO G,GAMA J,BREDA A M.Adaptive bayes for a student modeling prediction task based on learning styles[C]//Proceedings of the International Conference on User Modeling.BerLin:Springer,2003:328-332.<br /> [13]KUKAR M.Drifting Concepts as Hidden Factors in Clinical Studies[M]//Artificial Intelligence in Medicine.Berlin:Sprin-ger,2003:28-35.<br /> [14]ZHUANG F Z,LUO P,HE Q,et al.Survey on transfer learning research[J].Journal of Software,2015,26(1):26-39.(in Chinese)<br /> 庄福振,罗平,何清,等.迁移学习研究进展[J].软件学报,2015,26(1):26-39.<br /> [15]LU L L,ZHANG Y P,TAN H Y,et al.Research on classification algorithm and concept drift based on big data[J].Journal of Frontiers of Computer Science & Technology,2016,10(12):1683-1692.(in Chinese)<br /> 陆莉莉,张永潘,谈海宇,等.大数据分类挖掘算法及其概念漂移应用研究[J].计算机科学与探索,2016,10(12):1683-1692.<br /> [16] LI Y,ZHANG Y H,HU X G,et al.Classification Algorithm for Data Stream Based on Mixture Models of C4.5 and NB[J].Computer Science,2010,37(12):138-142.(in Chinese)<br /> 李燕,张玉红,胡学钢,等.基于C4.5和NB混合模型的数据流分类算法[J].计算机科学,2010,37(12):138-142.<br /> [17]VINAYAGA SUNDARAM B,AARIHI R J,SARANYA P A.Efficient Gaussian Decision Tree method for Concept drift data stream[C]//Proceedings of the International Conference on Signal Processing,Communication and Networking.Piscataway:IEEE,2015:1-5.<br /> [18]STREET W N.A streaming ensemble algorithm (SEA) for large-scale classification[C]//Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery & Data Mi-ning.New York:ACM,2001:377-382.<br /> [19]RAMAMURTHY S,BHATNAGAR R.Tracking Recurrent Concept Drift in Streaming Data Using Ensemble Classifiers[C]//Proceedings of the International Conference on Machine Lear-ning and Applications.IEEE:NJ,2007:404-409.<br /> [20]BRZEZINSKI D,STEFANOWSKI J.Reacting to different types of concept drift:The Accuracy Updated Ensemble algorithm[J].IEEE Transactions on Neural Networks & Learning Systems,2014,25(1):81-94.<br /> [21]SUN Y,TANG K,ZHU Z,et al.Concept Drift Adaptation by Exploiting Historical Knowledge[J].IEEE Transactions on Neural Networks & Learning Systems,2017,PP(99):1-11.<br /> [22]XIN Y,GUO G D,CHEN L F,et al.IKnnM-DHecoc:A Method for Handling the Problem of Concept Drift[J].Journal of Computer Research and Development,2011,48(4):592-601.(in Chinese)<br /> 辛轶,郭躬德,陈黎飞,等.IKnnM-DHecoc:一种解决概念漂移问题的方法[J].计算机研究与发展,2011,48(4):592-601.<br /> [23]WEISS K,KHOSHGOFTAAR T M,WANG D D.A survey of transfer learning[J].Journal of Big Data,2016,3(1):9.<br /> [24]SUN S,SHI H,WU Y.A survey of multi-source domain adaptation[J].Journal of Information Fusion,2015,24(C):84-92.<br /> [25]PAN S J,YANG Q.A Survey on Transfer Learning[J].IEEE Transactions on Knowledge And Data Engineering,2010,22(10):1345-1359.<br /> [26]WU Q,WU H,ZHOU X,et al.Online transfer learning with multiple homogeneous or heterogeneous sources[J].IEEE Transactions on Knowledge and Data Engineering,2017,29(7):1494-1507.<br /> [27]TANG S Q,WEN Y M,QIN Y X,et al.Online Transfer Learning from Multiple Sources Based on Local Classification Accuracy[J].Journal of Software,2017,28(11):2940-2960.(in Chinese)<br /> 唐诗淇,文益民,秦一休,等.一种基于局部分类精度的多源在线迁移学习算法[J].软件学报,2017,28(11):2940-2960.<br /> [28]BIFET A,HOLMES G,KIRKBY R,et al.MOA:Massive Online Analysis[J].Journal of Machine Learning Research,2010,11(2):1601-1604. |
[1] | CHEN Zhi-qiang, HAN Meng, LI Mu-hang, WU Hong-xin, ZHANG Xi-long. Survey of Concept Drift Handling Methods in Data Streams [J]. Computer Science, 2022, 49(9): 14-32. |
[2] | CHEN Yuan-yuan, WANG Zhi-hai. Concept Drift Detection Method for Multidimensional Data Stream Based on Clustering Partition [J]. Computer Science, 2022, 49(7): 25-30. |
[3] | XIA Yuan, ZHAO Yun-long, FAN Qi-lin. Data Stream Ensemble Classification Algorithm Based on Information Entropy Updating Weight [J]. Computer Science, 2022, 49(3): 92-98. |
[4] | LIU Ling-yun, QIAN Hui, XING Hong-jie, DONG Chun-ru, ZHANG Feng. Incremental Classification Model Based on Q-learning Algorithm [J]. Computer Science, 2020, 47(8): 171-177. |
[5] | KONG Fang, LI Qi-zhi, LI Shuai. Survey on Online Influence Maximization [J]. Computer Science, 2020, 47(5): 7-13. |
[6] | HE Xiao-wen, HU Yi-fei, WANG Hai-ping, CHEN Mo. Online Learning Nonnegative Matrix Factorization [J]. Computer Science, 2019, 46(6A): 473-477. |
[7] | WAN Jia-shan, CHEN Lei, WU Jin-hua, GAO Chao. Persona Based Social User Modeling Using KD-Tree [J]. Computer Science, 2019, 46(6A): 442-445. |
[8] | LI De-quan, DONG Qiao, ZHOU Yue-jin. Distributed Online Conditional Gradient Optimization Algorithm [J]. Computer Science, 2019, 46(3): 332-337. |
[9] | YANG Hai-min, PAN Zhi-song, BAI Wei. Review of Time Series Prediction Methods [J]. Computer Science, 2019, 46(1): 21-28. |
[10] | CHEN Jin-yin, FANG Hang, LIN Xiang, ZHENG Hai-bin, YANG Dong-yong, ZHOU Xiao. Personal Learning Recommendation Based on Online Learning Behavior Analysis [J]. Computer Science, 2018, 45(11A): 422-426. |
[11] | ZHAO Qiang-li and JIANG Yan-huang. Online Data Stream Mining for Seriously Unbalanced Applications [J]. Computer Science, 2017, 44(6): 255-259. |
[12] | WANG Chang-bao, LI Qing-wen and YU Hua-long. Active,Online and Weighted Extreme Learning Machine Algorithm for Class Imbalance Data [J]. Computer Science, 2017, 44(12): 221-226. |
[13] | XUE Wei, ZHANG Wen-sheng and REN Jun-hong. Online Learning Based on Stochastic Spectral Gradient [J]. Computer Science, 2016, 43(9): 47-51. |
[14] | CHEN Xiao-dong, SUN Li-juan, HAN Chong and GUO Jian. Detecting Concept Drift of Data Stream Based on Fuzzy Clustering [J]. Computer Science, 2016, 43(4): 219-223. |
[15] | DING Jian, HAN Meng and LI Juan. Review of Concept Drift Data Streams Mining Techniques [J]. Computer Science, 2016, 43(12): 24-29. |
|