Computer Science ›› 2019, Vol. 46 ›› Issue (2): 279-285.doi: 10.11896/j.issn.1002-137X.2019.02.043

• Graphics ,Image & Pattern Recognition • Previous Articles     Next Articles

Interactive Likelihood Target Tracking Algorithm Based on Deep Learning

ZHANG Ming-yue, WANG Jing   

  1. School of Computer Science and Technology,Nanjing Tech University,Nanjing 211816,China
  • Received:2017-12-22 Online:2019-02-25 Published:2019-02-25

Abstract: The traditional video target tracking methods usually prossess low accuracy.This paper proposed an improved scheme based on convolution neural network and the interactive likelihood algorithm,and optimized the particle filter algorithm on the basis of deep learning.To address the issue of deficient nonlinear fitting ability of the principal component analysis (PCA),a kernel principal component analysis (KPCA) tracking algorithm was provided to obtain the deeper characteristic expression of the target.Then,a novel interactive likelihood (ILH) method was performed for image-based trackers,which can non-iteratively compute the sampling of areas belonging to different targets and thus reducing the requirement for data associations.The performance of the presented algorithm was evaluated in comparison with several related algorithms on image datasets.The experimental results demonstrate the great robustness and accuracy of the proposed algorithm.

Key words: Convolutional neural network(CNN), Deep learning, Interactive likelihood(IL), Kernel principal component analysis(KPCA), Target tracking

CLC Number: 

  • TP181
[1]邓力,俞栋.深度学习:方法及应用[M].北京:机械工业出版社,2016.
[2]NAIYAN W,SIYI L,ABHINAY G,et al.Transferring Rich Feature Hierarchies for Robust Visual Tracking[J].arXiv preprint arXiv,2015:1501-04587.
[3]HOSEINNEZHAD R,VO B N,VO B T,et al.Visual tracking of numerous targets via multi-Bernoulli filtering of image data[J].Pattern Recognition,2012,45(10):3625-3635.
[4]LI H Y,BI D Y,ZHA Y F,et al.An Easily Initialized Visual Tracking Algorithm Based on Sim ilar Structure for Convolutional Neural Network[J].Journal of Electronics and Information Technology,2016,38(1):1-7.(in Chinese)
李寰宇,毕笃彦,查宇飞,等.一种易于初始化的类卷积神经网络视觉跟踪算法[J].电子与信息学报,2016,38(1):1-7.
[5]HU W P,HU H F,GU J Q,et al.Kernel Principal Component Analysis Network Method for Face Recognition[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2016,55(5):48-51,56.(in Chinese)
胡伟鹏,胡海峰,顾建权,等.核主成分分析网络的人脸识别方法[J].中山大学学报(自然科学版),2016,55(5):48-51,56.
[6]WANG L,W O,WANG X,et al.Visual Tracking with Fully Convolutional Networks[C]∥2015 IEEE International Confe-rence on Computer Vision(ICCV).IEEE Computer Society.2015:3119-3127.
[7]LI H Y,BI D Y,YANG Y,et al.Research on Visual Tracking Algorithm Based on Deep Feature Expression and Learning[J].Journal of Electronics and Information Technology,2015,37(9):2033-2039.(in Chinese)
李寰宇,毕笃彦,杨源,等.基于深度特征表达与学习的视觉跟踪算法研究[J].电子与信息学报,2015,37(9):2033-2039.
[8]FAN J,XU W,WU Y.Human Tracking Using Convolutional Neural Networks[J].IEEE Transactions on Neural Networks,2010,21(10):1610-1623.
[9]MA C,XU Y,NI B,et al.When Correlation Filters Meet Convolutional Neural Networks for Visual Tracking[J].IEEE Signal Processing Letters,2016,23(10):1454-1458.
[10]PANG S C,DU A A,YU Z Z.Robust multi-object tracking using deep learning framework[J].Journal of Optical Technology,2015,82(8):516-528.
[11]WEI C,CHEN J,SONG Z.Nonlinear process monitoring using improved kernel principal component analysis[C]∥ Control and Decision Conference.IEEE,2016:5832-5843.
[12]MARTNEZ S V,KNEBEL J F,THIRAN J P.Multi-object tracking using the particle filter algorithm on the top-view plan[C]∥Signal Processing Conference.European:IEEE,2015:285-288.
[13]XIAO J,STOLKIN R,OUSSALAH M.Continuously Adaptive Data Fusion and Model Relearning for Particle Filter Tracking with Multiple Features[J].IEEE Sensors Journal,2016,16(8):2639-2649.
[14]HINTON G E.Learning multiple layers of representation[J].Trends in Cognitive Sciences,2007,11(10):428.
[15]FAN F,GAO G,LI J.Visual object tracking based on perceptual hash algorithm[C]∥ International Computer Conference on Wavelet Active Media Technology and Information Processing.IEEE,2016:233-236.
[16]HOAK A,MEDEIROS H,POVINELLI R J.Image-BasedMulti- Target Tracking through Multi-Bernoulli Filtering with Interactive Likelihoods[J].Sensors,2017,17(3):501-522.
[17]标准的OTB-2015图像集[OL].http://cvlab.hanyang.ac.kr/tracker_b-enchmark/datasets.html.
[1] XU Yong-xin, ZHAO Jun-feng, WANG Ya-sha, XIE Bing, YANG Kai. Temporal Knowledge Graph Representation Learning [J]. Computer Science, 2022, 49(9): 162-171.
[2] RAO Zhi-shuang, JIA Zhen, ZHANG Fan, LI Tian-rui. Key-Value Relational Memory Networks for Question Answering over Knowledge Graph [J]. Computer Science, 2022, 49(9): 202-207.
[3] TANG Ling-tao, WANG Di, ZHANG Lu-fei, LIU Sheng-yun. Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy [J]. Computer Science, 2022, 49(9): 297-305.
[4] WANG Jian, PENG Yu-qi, ZHAO Yu-fei, YANG Jian. Survey of Social Network Public Opinion Information Extraction Based on Deep Learning [J]. Computer Science, 2022, 49(8): 279-293.
[5] HAO Zhi-rong, CHEN Long, HUANG Jia-cheng. Class Discriminative Universal Adversarial Attack for Text Classification [J]. Computer Science, 2022, 49(8): 323-329.
[6] JIANG Meng-han, LI Shao-mei, ZHENG Hong-hao, ZHANG Jian-peng. Rumor Detection Model Based on Improved Position Embedding [J]. Computer Science, 2022, 49(8): 330-335.
[7] SUN Qi, JI Gen-lin, ZHANG Jie. Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection [J]. Computer Science, 2022, 49(8): 172-177.
[8] SHEN Xiang-pei, DING Yan-rui. Multi-detector Fusion-based Depth Correlation Filtering Video Multi-target Tracking Algorithm [J]. Computer Science, 2022, 49(8): 184-190.
[9] HU Yan-yu, ZHAO Long, DONG Xiang-jun. Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification [J]. Computer Science, 2022, 49(7): 73-78.
[10] CHENG Cheng, JIANG Ai-lian. Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction [J]. Computer Science, 2022, 49(7): 120-126.
[11] HOU Yu-tao, ABULIZI Abudukelimu, ABUDUKELIMU Halidanmu. Advances in Chinese Pre-training Models [J]. Computer Science, 2022, 49(7): 148-163.
[12] ZHOU Hui, SHI Hao-chen, TU Yao-feng, HUANG Sheng-jun. Robust Deep Neural Network Learning Based on Active Sampling [J]. Computer Science, 2022, 49(7): 164-169.
[13] SU Dan-ning, CAO Gui-tao, WANG Yan-nan, WANG Hong, REN He. Survey of Deep Learning for Radar Emitter Identification Based on Small Sample [J]. Computer Science, 2022, 49(7): 226-235.
[14] WANG Jun-feng, LIU Fan, YANG Sai, LYU Tan-yue, CHEN Zhi-yu, XU Feng. Dam Crack Detection Based on Multi-source Transfer Learning [J]. Computer Science, 2022, 49(6A): 319-324.
[15] CHU Yu-chun, GONG Hang, Wang Xue-fang, LIU Pei-shun. Study on Knowledge Distillation of Target Detection Algorithm Based on YOLOv4 [J]. Computer Science, 2022, 49(6A): 337-344.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!