Computer Science ›› 2019, Vol. 46 ›› Issue (3): 9-18.doi: 10.11896/j.issn.1002-137X.2019.03.002
• Surveys • Previous Articles Next Articles
SHU Na1,LIU Bo1,LIN Wei-wei2,LI Peng-fei1
CLC Number:
[1]PRESS G.A very short history of big data[EB/OL].https://www.forbes.com/sites/gilpress/2013/05/09/a-very-short-history-of-big-data/#3cf546e65a18. [2]XING E P,HO Q,XIE P,et al.Strategies and principles of distributed machine learning on big data[J].Engineering,2016,2(2):179-195. [3]HE Q,LI N,LUO W J,et al.A survey of machine learning algo- rithms for big data[J].Pattern Recognition and Artificial Intelligence,2014,27(4):327-336.(in Chinese) 何清,李宁,罗文娟,等.大数据下的机器学习算法综述[J].模式识别与人工智能,2014,27(4):327-336. [4]ZHANG K,ALQAHTANI S,DEMIRBAS M.A Comparison of Distributed Machine Learning Platforms[C]∥2017 26th International Conference on Computer Communication and Networks (ICCCN).IEEE,2017:1-9. [5]LIU B,HE J R,GENG Y J,et al.Recent advances in infrastructure architecture of parallel machine learning algorithms[J].Computer Engineering and Applications,2017,53(11):31-38.(in Chinese) 刘斌,何进荣,耿耀君,等.并行机器学习算法基础体系前沿进展综述[J].计算机工程与应用,2017,53(11):31-38. [6]WANG Z,LIAO J,CAO Q,et al.Friendbook:a semantic-based friend recommendation system for social networks[J].IEEE Transactions on Mobile Computing,2015,14(3):538-551. [7]BOUAKAZ A,TALPIN J P,VITEK J.Affine data-flow graphs for the synthesis of hard real-time applications[C]∥2012 12th International Conference on Application of Concurrency to System Design (ACSD).IEEE,2012:183-192. [8]AKIDAU T,BRADSHAW R,CHAMBERS C,et al.The dataflow model:a practical approach to balancing correctness,latency,and cost in massive-scale,unbounded,out-of-order data processing[J].Proceedings of the VLDB Endowment,2015,8(12):1792-1803. [9]MENG X,BRADLEY J,YAVUZ B,et al.Mllib:Machine lear- ning in apache spark[J].The Journal of Machine Learning Research,2016,17(1):1235-1241. [10]LU J,WU D,MAO M,et al.Recommender system application developments:A survey[J].Decision Support Systems,2015,74(C):12-32. [11]ALEXANDER M,NARAYANAMURTHY S.An architecture for parallel topic models[J].Proceedings of the VLDB Endowment,2010,3(1):703-710. [12]LI M,ZHOU L,YANG Z,et al.Parameter server for distributed machine learning[C]∥Big Learning NIPS Workshop.2013. [13]LI M.Scaling Distributed Machine Learning with the Parameter Server[C]∥International Conference on Big Data Science and Computing.ACM,2014. [14]LI M,ANDERSEN D G,SMOLA A J,et al.Communication efficient distributed machine learning with the parameter server[C]∥Advances in Neural Information Processing Systems.2014:19-27. [15]HO Q,CIPAR J,CUI H,et al.More effective distributed ml via a stale synchronous parallel parameter server[C]∥Advances in neural information processing systems.2013:1223-1231. [16]AHMED A,SHERVASHIDZE N,NARAYANAMURTHY S,et al.Distributed large-scale natural graph factorization[C]∥Proceedings of the 22nd International Conference on World Wide Web.ACM,2013:37-48. [17]DEAN J,CORRADO G,MONGA R,et al.Large scale distributed deep networks[C]∥Advances in neural information proces-sing systems.2012:1223-1231. [18]XING E P,HO Q,DAI W,et al.Petuum:A new platform for dis- tributed machine learning on big data[J].IEEE Transactions on Big Data,2015,1(2):49-67. [19]DROR G,KOENIGSTEIN N,KOREN Y,et al.The yahoo! music dataset and kdd-cup’11[C]∥Proceedings of KDD Cup 2011.2012:3-18. [20]HE K,ZHANG X,REN S,et al.Deep residual learning for ima- ge recognition∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. [21]KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Imagenet classification with deep convolutional neural networks[C]∥Advances in neural information processing systems.2012:1097-1105. [22]DAI W,KUMAR A,WEI J,et al.High-Performance Distributed ML at Scale through Parameter Server Consistency Models[C]∥29th AAAI Conference on Artificial Intelligence(AAA-15).2015:79-87. [23]LIAW A,WIENER M.Classification and regression by random Forest[J].R News,2002,2(3):18-22. [24]HOSMER J D W,LEMESHOW S,STURDIVANT R X.Applied logistic regression[M].New York:John Wiley & Sons,2013. [25]ABADI M,BARHAM P,CHEN J,et al.TensorFlow:A System for Large-Scale Machine Learning[J].arXiv:1605.08695,2016. [26]ARVIND,CULLER D E.Dataflow Architectures.Annual Review of Computer Science,2010,1(1):225-253. [27]SAK H,SENIOR A,BEAUFAYS F.Long short-term memory recurrent neural network architectures for large scale acoustic modeling[C]∥Fifteenth Annual Conference of the International Speech Communication Association.2014. [28]SUTSKEVER I,VINYALS O,LE Q V.Sequence to sequence learning with neural networks[C]∥Advances in neural information processing systems.2014:3104-3112. [29]VISHNU A,SIEGEL C,DAILY J.Distributed tensorflow with MPI[J].arXiv:1603.02339,2016. [30]JIA Y,SHELHAMER E,DONAHUE J,et al.Caffe:Convolutional architecture for fast feature embedding[C]∥Proceedings of the 22nd ACM International Conference on Multimedia.ACM,2014:675-678. [31]GOODFELLOW I,BENGIO Y,COURVILLE A.Deep learning[M].Massachusetts:MIT press,2016. [32]KANG L Y,WANG J F,LIU J,et al.Survey on parallel and dis- tributed optimization algorithms for scalable machine learning[J].Journal of Software,2018,29(1):109-130.(in Chinese) 亢良伊,王建飞,刘杰,等.可扩展机器学习的并行与分布式优化算法综述[J].软件学报,2018,29(1):109-130. [33]LIU T Y,CHEN W,WANG T.Distributed machine learning:Foundations,trends,and practices[C]∥Proceedings of the 26th International Conference on World Wide Web Companion.International World Wide Web Conferences Steering Committee,2017:913-915. [34]ZHOU J,DING Y,et al.KunPeng:Parameter Server based Distributed Learning Systems and Its Applications in Alibaba and Ant Financial[C]∥ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.ACM,2017:1693-1702. [35]SUNG N,KIM M,JO H,et al.NSML:A Machine Learning Platform That Enables You to Focus on Your Models[J].ar-Xiv:1712.05902. [36]SABOUR S,FROSST N,HINTON G E.Dynamic routing between capsules[C]∥Advances in Neural Information Processing Systems.2017:3859-3869. [37]GAO Y,PHILLIPS J M,ZHENG Y,et al.Fully convolutional structured LSTM networks for joint 4D medical image segmentation[C]∥2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018).IEEE,2018:1104-1108. [38]NAZARI M,OROOJLOOY A,SNYDER L V,et al.Deep Reinforcement Learning for Solving the Vehicle Routing Problem[J].arXiv:1802.04240. [39]LEE K,LAM M,PEDARSANI R,et al.Speeding up distributed machine learning using codes[J].IEEE Transactions on Information Theory,2017,PP(99):1. |
[1] | LENG Dian-dian, DU Peng, CHEN Jian-ting, XIANG Yang. Automated Container Terminal Oriented Travel Time Estimation of AGV [J]. Computer Science, 2022, 49(9): 208-214. |
[2] | NING Han-yang, MA Miao, YANG Bo, LIU Shi-chang. Research Progress and Analysis on Intelligent Cryptology [J]. Computer Science, 2022, 49(9): 288-296. |
[3] | HE Qiang, YIN Zhen-yu, HUANG Min, WANG Xing-wei, WANG Yuan-tian, CUI Shuo, ZHAO Yong. Survey of Influence Analysis of Evolutionary Network Based on Big Data [J]. Computer Science, 2022, 49(8): 1-11. |
[4] | LI Yao, LI Tao, LI Qi-fan, LIANG Jia-rui, Ibegbu Nnamdi JULIAN, CHEN Jun-jie, GUO Hao. Construction and Multi-feature Fusion Classification Research Based on Multi-scale Sparse Brain Functional Hyper-network [J]. Computer Science, 2022, 49(8): 257-266. |
[5] | ZHANG Guang-hua, GAO Tian-jiao, CHEN Zhen-guo, YU Nai-wen. Study on Malware Classification Based on N-Gram Static Analysis Technology [J]. Computer Science, 2022, 49(8): 336-343. |
[6] | CHEN Jing, WU Ling-ling. Mixed Attribute Feature Detection Method of Internet of Vehicles Big Datain Multi-source Heterogeneous Environment [J]. Computer Science, 2022, 49(8): 108-112. |
[7] | CHEN Ming-xin, ZHANG Jun-bo, LI Tian-rui. Survey on Attacks and Defenses in Federated Learning [J]. Computer Science, 2022, 49(7): 310-323. |
[8] | XIAO Zhi-hong, HAN Ye-tong, ZOU Yong-pan. Study on Activity Recognition Based on Multi-source Data and Logical Reasoning [J]. Computer Science, 2022, 49(6A): 397-406. |
[9] | YAO Ye, ZHU Yi-an, QIAN Liang, JIA Yao, ZHANG Li-xiang, LIU Rui-liang. Android Malware Detection Method Based on Heterogeneous Model Fusion [J]. Computer Science, 2022, 49(6A): 508-515. |
[10] | LI Ya-ru, ZHANG Yu-lai, WANG Jia-chen. Survey on Bayesian Optimization Methods for Hyper-parameter Tuning [J]. Computer Science, 2022, 49(6A): 86-92. |
[11] | ZHAO Lu, YUAN Li-ming, HAO Kun. Review of Multi-instance Learning Algorithms [J]. Computer Science, 2022, 49(6A): 93-99. |
[12] | WANG Fei, HUANG Tao, YANG Ye. Study on Machine Learning Algorithms for Life Prediction of IGBT Devices Based on Stacking Multi-model Fusion [J]. Computer Science, 2022, 49(6A): 784-789. |
[13] | XU Jie, ZHU Yu-kun, XING Chun-xiao. Application of Machine Learning in Financial Asset Pricing:A Review [J]. Computer Science, 2022, 49(6): 276-286. |
[14] | CHEN Xin, LI Fang, DING Hai-xin, SUN Wei-ze, LIU Xin, CHEN De-xun, YE Yue-jin, HE Xiang. Parallel Optimization Method of Unstructured-grid Computing in CFD for DomesticHeterogeneous Many-core Architecture [J]. Computer Science, 2022, 49(6): 99-107. |
[15] | SUN Xuan, WANG Huan-xiao. Capability Building for Government Big Data Safety Protection:Discussions from Technologicaland Management Perspectives [J]. Computer Science, 2022, 49(4): 67-73. |
|