Computer Science ›› 2019, Vol. 46 ›› Issue (3): 88-91.doi: 10.11896/j.issn.1002-137X.2019.03.011
• ChinaMM2018 • Previous Articles Next Articles
HE Xiao-yi1,DUAN Ling-yu2,LIN Wei-yao1
CLC Number:
[1]SULLIVAN G J,OHM J,HAN W J,et al.Overview of the high efficiency video coding (HEVC) standard[J].IEEE Transactions on Circuits and Systems for Video Technology,2012,22(12):1649-1668. [2]OHM J R,SULLIVAN G J,SCHWARZ H,et al.Comparison of the coding efficiency of video coding standards-including high efficiency video coding (HEVC)[J].IEEE Transactions on circuits and systems for video technology,2012,22(12):1669-1684. [3]DONG C,DENG Y,CHANGE LOY C,et al.Compression artifacts reduction by a deep convolutional network[C]∥Procee-dings of the IEEE International Conference on Computer Vision.2015:576-584. [4]PARK W S,KIM M.CNN-based in-loop filtering for coding efficiency improvement[C]∥Image,Video,and Multidimensional Signal Processing Workshop (IVMSP).IEEE,2016:1-5. [5]DONG C,LOY C C,HE K,et al.Learning a deep convolutional network for image super-resolution[C]∥European Conference on Computer Vision.Cham:Springer,2014:184-199. [6]DAI Y,LIU D,WU F.A convolutional neural network approach for post-processing in HEVC intra coding[C]∥International Conference on Multimedia Modeling.Cham:Springer,2017:28-39. [7]YANG R,XU M,WANG Z,et al.Enhancing Quality for HEVC Compressed Videos[J].arXiv preprint arXiv:1709.06734,2017. [8]WANG T,CHEN M,CHAO H.A novel deep learning-based method of improving coding efficiency from the decoder-end for hevc[C]∥Data Compression Conference (DCC),2017.IEEE,2017:410-419. [9]SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[J].arXiv preprint arXiv:1409.1556,2014. [10]HE K,SUN J.Convolutional neural networks at constrained time cost[C]∥2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).IEEE,2015:5353-5360. [11]HE K,ZHANG X,REN S,et al.Deep residual learning for ima- ge recognition[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. [12]GROSS S,WILBER M.Training and investigating residual nets[EB/OL].http://torch.ch/blog/2016/02/04/resnets.html 2016. [13]SCHWARZ H,MARPE D,WIEGAND T.Analysis of hierarchi- cal B pictures and MCTF[C]∥2006 IEEE International Confe-rence on Multimedia and Expo.IEEE,2006:1929-1932. [14]KINGMA D P,BA J.Adam:A method for stochastic optimization[J].arXiv preprint arXiv:1412.6980,2014. [15]IOFFE S,SZEGEDY C.Batch normalization:Accelerating deep network training by reducing internal covariate shift[J].arXiv preprint arXiv:1502.03167,2015. [16]ABADI M,BARHAM P,CHEN J,et al.TensorFlow:A System for Large-Scale Machine Learning[C]∥Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation.2016:265-283. [17]BOSSEN F.Common test conditions and software reference con- figurations[C]∥12th Joint Collaborative Team on Video Coding Meeting.2011. [18]BJONTEGARRD G.Calculation of average PSNR differences between RD-curves:ITU-T SG16/Q6[R].VCEG-M33,Austin,US,2001. |
[1] | ZHOU Le-yuan, ZHANG Jian-hua, YUAN Tian-tian, CHEN Sheng-yong. Sequence-to-Sequence Chinese Continuous Sign Language Recognition and Translation with Multi- layer Attention Mechanism Fusion [J]. Computer Science, 2022, 49(9): 155-161. |
[2] | WANG Xin-tong, WANG Xuan, SUN Zhi-xin. Network Traffic Anomaly Detection Method Based on Multi-scale Memory Residual Network [J]. Computer Science, 2022, 49(8): 314-322. |
[3] | CHEN Yong-quan, JIANG Ying. Analysis Method of APP User Behavior Based on Convolutional Neural Network [J]. Computer Science, 2022, 49(8): 78-85. |
[4] | ZHU Cheng-zhang, HUANG Jia-er, XIAO Ya-long, WANG Han, ZOU Bei-ji. Deep Hash Retrieval Algorithm for Medical Images Based on Attention Mechanism [J]. Computer Science, 2022, 49(8): 113-119. |
[5] | DAI Zhao-xia, LI Jin-xin, ZHANG Xiang-dong, XU Xu, MEI Lin, ZHANG Liang. Super-resolution Reconstruction of MRI Based on DNGAN [J]. Computer Science, 2022, 49(7): 113-119. |
[6] | LIU Yue-hong, NIU Shao-hua, SHEN Xian-hao. Virtual Reality Video Intraframe Prediction Coding Based on Convolutional Neural Network [J]. Computer Science, 2022, 49(7): 127-131. |
[7] | XU Ming-ke, ZHANG Fan. Head Fusion:A Method to Improve Accuracy and Robustness of Speech Emotion Recognition [J]. Computer Science, 2022, 49(7): 132-141. |
[8] | WU Zi-bin, YAN Qiao. Projected Gradient Descent Algorithm with Momentum [J]. Computer Science, 2022, 49(6A): 178-183. |
[9] | GAO Rong-hua, BAI Qiang, WANG Rong, WU Hua-rui, SUN Xiang. Multi-tree Network Multi-crop Early Disease Recognition Method Based on Improved Attention Mechanism [J]. Computer Science, 2022, 49(6A): 363-369. |
[10] | ZHANG Jia-hao, LIU Feng, QI Jia-yin. Lightweight Micro-expression Recognition Architecture Based on Bottleneck Transformer [J]. Computer Science, 2022, 49(6A): 370-377. |
[11] | WANG Jian-ming, CHEN Xiang-yu, YANG Zi-zhong, SHI Chen-yang, ZHANG Yu-hang, QIAN Zheng-kun. Influence of Different Data Augmentation Methods on Model Recognition Accuracy [J]. Computer Science, 2022, 49(6A): 418-423. |
[12] | SUN Jie-qi, LI Ya-feng, ZHANG Wen-bo, LIU Peng-hui. Dual-field Feature Fusion Deep Convolutional Neural Network Based on Discrete Wavelet Transformation [J]. Computer Science, 2022, 49(6A): 434-440. |
[13] | YANG Yue, FENG Tao, LIANG Hong, YANG Yang. Image Arbitrary Style Transfer via Criss-cross Attention [J]. Computer Science, 2022, 49(6A): 345-352. |
[14] | YANG Jian-nan, ZHANG Fan. Classification Method for Small Crops Combining Dual Attention Mechanisms and Hierarchical Network Structure [J]. Computer Science, 2022, 49(6A): 353-357. |
[15] | ZHAO Zheng-peng, LI Jun-gang, PU Yuan-yuan. Low-light Image Enhancement Based on Retinex Theory by Convolutional Neural Network [J]. Computer Science, 2022, 49(6): 199-209. |
|