Computer Science ›› 2019, Vol. 46 ›› Issue (3): 197-201.doi: 10.11896/j.issn.1002-137X.2019.03.029
• Information Security • Previous Articles Next Articles
CAO Wei-dong, XU Zhi-xiang, WANG Jing
CLC Number:
[1]CHANDOLA V,BANERJEE A,KUMAR V.Anomaly detec- tion:A survey[J].ACM Computing Surveys(CSUR),2009,41(3):1-58. [2]DENNING D E.An Intrusion-Detection Model.IEEE Transactions on Software Engineering,2006,SE-13(2):222-232. [3]SOMMER R,PAXSON V.Outside the Closed World:On Using Machine Learning for Network Intrusion Detection[C]∥IEEE Symposium on Security and Privacy.IEEE Computer Society,2010:305-316. [4]LASKOV P,DSSEL P,SCHFER C,et al.Learning Intrusion Detection:Supervised or Unsupervised?[C]∥International Conference on Image Analysis and Processing.Springer-Verlag,2005:50-57. [5]LIANG C,LI C H.Novel Intrusion Detection Method Based on Semi-supervised Clustering[J].Computer Science,2016,43(5):87-90.(in Chinese) 梁辰,李成海.一种新的半监督入侵检测方法[J].计算机科学,2016,43(5):87-90. [6]YANG S L,YANG Y H,SHEN Q N,et al.A method of Intrusion Detection Based on Semi-Supervised GHSOM[J].Journal of Computer Research and Development,2013,50(11):2375-2382.(in Chinese) 阳时来,杨雅辉,沈晴霓,等.一种基于半监督GHSOM的入侵检测方法[J].计算机研究与发展,2013,50(11):2375-2382. [7]ZHANG X,ZHU P,TIAN J,et al.An effective semi-supervised model for intrusion detection using feature selection based Lap-SVM[C]∥2017 International Conference on Computer,Information and Telecommunication Systems (CITS).Dalian,2017:283-286. [8]ASHFAQ R A R,WANG X Z,HUANG J Z,et al.Fuzziness based semi-supervised learning approach for intrusion detection system[J].Information Sciences An International Journal,2017,378(C):484-497. [9]NOSADA G,OMOTE K,NISHIDE T.Network Intrusion Detection Based on Semi-supervised Variational Auto-Encoder[C]∥European Symposium on Research in Computer Security-ESORICS 2017.Cham:Springer,2017. [10]FITRIANI S,MANDALA S,MURTI M A.Review of semi-supervised method for Intrusion Detection System[C]∥Multimedia and Broadcasting.IEEE,2017:36-41. [11]KINGMA D P,WELLING M.Auto-Encoding Variational Bayes[C]∥Conference proceedings:papers accepted to the International Conference on Learning Representations (ICLR).2014. [12]KINGMA D P,REZENDE D J,MOHAMED S,et al.Semi-Supervised Learning with Deep Generative Models[J].Advances in Neural Information Processing Systems,2014,4:3581-3589. [13]MERZ C J,CLAIR D C,BOND W E.SeMi-supervised adaptive resonance theory (SMART2)[C]∥International Joint Con-ference on Neural Networks.IEEE,1992. [14]周志华.机器学习[M].北京:清华大学出版社,2016:298-297. [15]LIU J W,LIU Y,LUO X L.Semi-Supervised Learning Methods[J].Chinese Journal of Couputers,2015,38(8):1592-1617.(in Chinese) 刘建伟,刘媛,罗雄麟.半监督学习方法[J].计算机学报,2015,38(8):1592-1617. [16]GAO N,GAO L,HE Y Y,et al.A Lightweight Intrusion Detection Model Based on Autoencoder Network with Feature Reduction[J].2017,45(3):730-739.(in Chinese) 高妮,高岭,贺毅岳,等.基于自编码网络特征降维的轻量级入侵检测模型[J].电子学报,2017,45(3):730-739. [17]TAVALLAEE M,BAGHERI E,LU W,et al.A detailed analysis of the KDD CUP 99 data set[C]∥IEEE International Conference on Computational Intelligence for Security & Defense Applications.IEEE,2009:1-6. |
[1] | WANG Guan-yu, ZHONG Ting, FENG Yu, ZHOU Fan. Collaborative Filtering Recommendation Method Based on Vector Quantization Coding [J]. Computer Science, 2022, 49(9): 48-54. |
[2] | WANG Xin-tong, WANG Xuan, SUN Zhi-xin. Network Traffic Anomaly Detection Method Based on Multi-scale Memory Residual Network [J]. Computer Science, 2022, 49(8): 314-322. |
[3] | WU Hong-xin, HAN Meng, CHEN Zhi-qiang, ZHANG Xi-long, LI Mu-hang. Survey of Multi-label Classification Based on Supervised and Semi-supervised Learning [J]. Computer Science, 2022, 49(8): 12-25. |
[4] | HOU Xia-ye, CHEN Hai-yan, ZHANG Bing, YUAN Li-gang, JIA Yi-zhen. Active Metric Learning Based on Support Vector Machines [J]. Computer Science, 2022, 49(6A): 113-118. |
[5] | ZHOU Zhi-hao, CHEN Lei, WU Xiang, QIU Dong-liang, LIANG Guang-sheng, ZENG Fan-qiao. SMOTE-SDSAE-SVM Based Vehicle CAN Bus Intrusion Detection Algorithm [J]. Computer Science, 2022, 49(6A): 562-570. |
[6] | CAO Yang-chen, ZHU Guo-sheng, SUN Wen-he, WU Shan-chao. Study on Key Technologies of Unknown Network Attack Identification [J]. Computer Science, 2022, 49(6A): 581-587. |
[7] | WEI Hui, CHEN Ze-mao, ZHANG Li-qiang. Anomaly Detection Framework of System Call Trace Based on Sequence and Frequency Patterns [J]. Computer Science, 2022, 49(6): 350-355. |
[8] | WANG Yu-fei, CHEN Wen. Tri-training Algorithm Based on DECORATE Ensemble Learning and Credibility Assessment [J]. Computer Science, 2022, 49(6): 127-133. |
[9] | XU Hua-jie, CHEN Yu, YANG Yang, QIN Yuan-zhuo. Semi-supervised Learning Method Based on Automated Mixed Sample Data Augmentation Techniques [J]. Computer Science, 2022, 49(3): 288-293. |
[10] | QIAO Jie, CAI Rui-chu, HAO Zhi-feng. Mining Causality via Information Bottleneck [J]. Computer Science, 2022, 49(2): 198-203. |
[11] | HOU Hong-xu, SUN Shuo, WU Nier. Survey of Mongolian-Chinese Neural Machine Translation [J]. Computer Science, 2022, 49(1): 31-40. |
[12] | ZHANG Shi-peng, LI Yong-zhong. Intrusion Detection Method Based on Denoising Autoencoder and Three-way Decisions [J]. Computer Science, 2021, 48(9): 345-351. |
[13] | LI Bei-bei, SONG Jia-rui, DU Qing-yun, HE Jun-jiang. DRL-IDS:Deep Reinforcement Learning Based Intrusion Detection System for Industrial Internet of Things [J]. Computer Science, 2021, 48(7): 47-54. |
[14] | CHENG Xi, CAO Xiao-mei. SQL Injection Attack Detection Method Based on Information Carrying [J]. Computer Science, 2021, 48(7): 70-76. |
[15] | ZHAO Min, LIU Jing-lei. Semi-supervised Clustering Based on Gaussian Fields and Adaptive Graph Regularization [J]. Computer Science, 2021, 48(7): 137-144. |
|