基于三角范数的引力搜索算法分析

徐 遥 安亚静 王士同

(江南大学数字媒体学院 无锡 214122)

摘 要 分析了由 Esmat Rashedi 提出的引力搜索算法(GSA)之后,对万有引力公式进行变换,用三角范数的其他算 子代替万有引力公式中两个粒子惯性质量之间的乘法算子。分析不同三角范数算子的二维图像的特征之后,选择了 三角范数中的 5 个算子进行实验。实验结果表明,对于具有一定三维图像特征的测试函数,使用相应三角范数算子的 引力搜索算法对其全局搜索的能力相对地好于使用其它三角范数算子的改进引力搜索算法。 关键词 引力搜索算法,万有引力公式,三角范数算子,二维的图像特征 中图法分类号 TP391 文献标识码 A

Analyzing of Gravitational Search Algorithm Based on Triangular Norms

XU Yao AN Ya-jing WANG Shi-tong (School of Digital Media, Jiangnan University, Wuxi 214122, China)

Abstract To transform universal gravitational formula after analyzing Gravitational Search Algorithm (GSA) Esmat Rashedi proposed, the product operator between two particles's inertia quality in the universal gravitation formula ws substituted by other triangular norms operator. Five triangular norms operators were chose for experience after analyzing feature of two-dimensional image to different triangular norms operators. Results show: to a test function having certain three-dimensional image feature, ability to find the global optimum using GSA of corresponding triangular norms operator is relatively better than GSA of others triangular norms operators.

Keywords Gravitational search algorithm, Universal gravitational formula, Triangular norms operator, Feature of twodimensional image

1 引言

引力搜索算法(GSA)是一种群体智能优化算法,是 2008 年由 Esmat Rashedi 等人受到万有引力公式的启发而提出来 的。文献[1]中使用了 23 个经典测试函数对 GAS 进行测试, 和其它的经典优化算法(由 Eberhart 博士和 Kennedy 博士提 出的 PSO 算法^[2]和 Formato 提出的 CFO 算法^[3])相比较,对 于大部分测试函数来说,GSA 算法的收敛速度更快,而且最 后搜索结果的精度也更好。

和 PSO 算法一样,引力搜索算法的初始位置和初始速度 都是随机生成的。首先根据式(1)和式(2),我们计算出每个 粒子的惯性质量 *M_i*(*t*):

$$m_i(t) = \frac{fit_i(t) - worst(t)}{best(t) - worst(t)}$$
(1)

$$M_i(t) = \frac{m_i(t)}{\sum\limits_{j=1}^N m_j(t)}$$
(2)

式中, $fit_i(t)$ 是 t 时刻粒子 i 的适应值,best(t)和 worst(t)是 分别在 t 时刻粒子群的最好适应值和最坏适应值。

$$worst(t) = \max_{i \in \{1, \dots, N\}} fit_i(t)$$
(4)

对于求最大值问题, best(t)和 worst(t)的定义如下:

$$best(t) = \max_{i \in \{1, \cdots, N\}} fit_i(t)$$
(5)

$$worst(t) = \min_{i \in \{1, \dots, N\}} fit_i(t) \tag{6}$$

其次,变换万有引力公式后,可以计算各个粒子在每一维 空间上相互之间的引力。比如在第 d 维空间上粒子 i 和粒子 j 之间的引力 F⁴₄(t)计算如下:

$$F_{ij}^{d}(t) = G(t) \frac{M_{i}(t) \times M_{j}(t)}{R_{ij}(t) + \varepsilon} \cdot (x_{j}^{d}(t) - x_{i}^{d}(t))$$
(7)

$$G(t) = G_0 e^{-\alpha \frac{t}{T}}$$
(8)

式中, $R_{ij}(t)$ 表示粒子 i 到粒子 j 之间的欧式距离,G(t)表示引力常数。

然后再根据运动规律计算出各个粒子在每一维空间上 t时刻的加速度。比如粒子 i 在第 d 维空间上的加速度 $a_i^q(t)$ 计算如下:

$$a_i^d(t) = \frac{\sum_{i=1, j \neq i}^N \operatorname{rand} \cdot F_{ij}^d(t)}{M_i(t)}$$
(9)

最后,下一时刻每个粒子的位置和加速度的更新公式如下:

到稿日期:2010-12-10 返修日期:2011-03-23 本文受国家自然科学基金(60773206,60704047)资助。

徐 遥(1985一),男,硕士,主要研究方向为人工智能与模式识别,E-mail:xuy2030@126.com;安亚静(1986一),女,硕士生,主要研究方向为人 工智能与模式识别;王士同(1964一),男,博士生导师,主要研究方向为人工智能与模式识别、生物信息学。

 $v_i^d(t+1) = \operatorname{rand} \times v_i^d(t) + a_i^d(t) \tag{10}$

$$x_i^d(t+1) = x_i^d(t) + v_i^d(t+1)$$
(11)

根据以上原理步骤,不断地迭代循环更新粒子群中每个 粒子的位置和加速度,直到全局最小值 best(t)达到一定的精 度或迭代达到规定的次数,跳出循环,best(t)就是所求的最优 值。

2 基于三角范数的引力模糊集的构造

在本文中,使用三角范数其它不同的算子替换万有引力 公式中的乘法算子,以此建立一个模糊集。第2.1节介绍了 几种三角范数算子及其性质。第2.2节分析用各三角范数算 子替换后的引力搜索算法。最后分析和解决使用有些三角范 数算子时所遇到的加速度会无限大的问题。

2.1 三角范数的性质及其算子的选择

由文献[4-7]可知,三角范数是一个在单位区间[0,1]上 的二元运算 T(a,b): $[0,1] \times [0,1] \rightarrow [0,1]$,它满足以下条 件:

(1)交换律:T(a,b) = T(b,a); (2)单调性:如果 b < c,则 T(a,b) < T(a,c); (3)结合律:T(T(a,b),c) = T(a,T(b,c)); (4)边界条件:T(1,a) = a, T(0,a) = 0。

称满足以上4个条件者为T-范数。

对于满足上面前 3 个条件并且满足以下条件者称为 T-余范数:

T'(a,0) = a,并且T'(a,1) = 1

在本文中,首先选取3个T-范数算子,分别如下:

• $T_Z(a,b) = \min(a,b)$

• $T_P(a,b) = a \cdot b$

• $T_L(a,b) = \max(a+b-1,0)$

根据文献[4]中的定义 2,对于任意两个 T-范数算子 T_i 和 T₂,如果对于∀x,y,且有(x,y)∈[0,1]²,则有 T₁(x,y) ≪ T₂(x,y),那么可以认为在同等条件下 T₁ 比 T₂ 弱。对于以 上 3 个 T 范数算子 T_Z、T_P 和 T_L,可以得出,在同等条件下, 满足 T_L ≪T_P ≪T_Z,即 T_L、T_P 和 T_Z3 个三角范数算子是越来 越强。为了增加实验的对比性,又选取了另外两个算子:T-范 数算子 T_{HP}和 T-余范数算子 S_Z:

•
$$T_{HD}(a,b) = \begin{cases} 0 , a=b=0 \\ \frac{a \cdot b}{a+b-a \cdot b} , \text{otherwise} \end{cases}$$

• $S_Z(a,b) = \max(a,b)$

在同等条件下,不难得出算子 T_{HD} 比算子 T_Z 要弱,但比 算子 T_P 要强。算子 S_Z 虽然是 T-余范数算子,但在这里,我 们只是从算子的强弱性上考虑,因此在同等条件下,算子 S_Z 比算子 T_Z 要强。在所选择的 5 个算子中,算子 S_Z 是最强 的,算子 T_L 是最弱的。

2.2 三角范数各算子对引力搜索算法的替换与分析

根据文献[8,9]中的牛顿万有引力定律可知,任何一个物体都通过一种力吸引着其它所有的物体,这种力的大小与两个物体的惯性质量的乘积成正比,与物体之间的欧氏距离的大小成反比。这个力的计算公式如下:

$$\vec{f}_{1,2} = G \cdot \frac{m_1 \cdot m_2}{\|\vec{r}\|^2} \cdot \frac{\vec{r}}{\|\vec{r}\|}$$
(12)

式中,G为引力常数,m₁和 m₂为粒子的惯性质量,r 为粒子 之间的距离矢量。

在本文中,由于所有粒子的惯性质量大小均在[0,1]之 间,因此式(12)可以改写成如下形式:

$$\vec{f}_{1,2} = G \cdot \frac{T_P(m_1, m_2)}{\|\vec{r}\|^2} \cdot \frac{\vec{r}}{\|\vec{r}\|}$$
(13)

用其它三角范数算子 T 替换式(13)中的三角范数的乘 积算子,得

$$\vec{f}_{1,2} = G \cdot \frac{T(m_1, m_2)}{\|\vec{r}\|^2} \cdot \frac{\vec{r}}{\|\vec{r}\|}$$
(14)

根据式(14),可以把式(7)改写成如下形式:

$$F_{ij}^{d}(t) = G(t) \cdot \frac{T(M_{i}(t), M_{j}(t))}{R_{ij}(t) + \epsilon} \cdot (x_{j}^{d}(t) - x_{i}^{d}(t))$$

$$(15)$$

从式(15)可以看出,对于某个粒子,在 t 时刻,它的惯性 质量与它和其它粒子之间的欧式距离以及引力常数都是一定 不变的,因此它所受到的所有其它粒子对它的合力只与三角 范数算子 T(M_i(t),M_j(t))的大小成正比。因此,只要知道三 角范数算子的一些性质,那么几乎就知道了用一个三角范数 算子替换后的引力搜索算法对一个函数搜索能力的好坏。

在某一个时刻,由于受力粒子的惯性质量不变,对于一个 三角范数 T(x,y),假设 y 为受力粒子的惯性质量,等于常数 a,x 为作用粒子的惯性质量,则 T(a,x) = T(x,y)。因此只 要知道作用粒子的惯性质量 x 对三角范数 T(x,y)大小的影 响,也就知道了作用粒子的惯性质量 x 对受力粒子引力大小 的影响,所以有必要分析各三角范数算子的性质。为了便于 分析,首先画出本文中所使用的各个三角范数 T(a,x)的二维 图像,其中 a=0.5,如图 1 所示。

图1 各算子二维特征图像

从图1可以看出,在三角范数各算子中,越弱的算子,其 函数值相对也就越小;相反,越强的算子,其函数值相对也就 越大。对于式(9)中的粒子加速度 aⁱ(t),在引力搜索算法中, 可以认为它是引力搜索算法的步长,它的大小决定了引力搜 索算法的收敛速度和全局搜索的能力。从总体上说,加速度 aⁱ(t)的值越大,引力搜索算法相对越容易跳出局部最优值, 但它的收敛速度相对比较慢,搜索到的结果精度相对也较差; 相反,加速度 aⁱ(t)的值越小,引力搜索算法相对越难跳出局 部最优值,但它的收敛速度相对比较快,搜索到的结果精度相 对较高。但通过下面的实验结果表明,加速度 aⁱ(t)的值不能 够太大,也不能够太小,否则改进后的引力搜索算法不收敛。 由于受力粒子的受力大小和三角范数算子的函数值成正比, 根据式(9)可知,三角范数算子 T 的函数值越大,粒子的加速 度 aⁱ(t)的值相对也越大;三角范数算子 T 的函数值越小,粒 子的加速度 $a_{i}^{d}(t)$ 的值相对也越小。因此,对于本文所用到的 5 个三角范数算子 S_{Z} 、 T_{Z} 、 T_{HD} 、 T_{P} 和 T_{L} ,用它们所替换的相 对应的引力搜索算法跳出局部最优值的能力逐渐减小,收敛 速度相对逐渐变快,搜索到的结果精度相对地也较高。但通 过下面的实验表明,三角范数算子 S_{Z} 和 T_{L} 相对应替换的引 力搜索算法对函数搜索全局最优值时,几乎不收敛。也就是 说,在选取三角范数算子时,算子 T不能够比 S_{Z} 更强,也不 能够比 T_{L} 更弱。

2.3 加速度无限大问题的分析与解决

根据 2.1 节定义的三角范数可知,在本文中粒子的惯性 质量的大小范围应该在[0,1]之间。假设粒子 2 受到来自粒 子 1 的引力 $\vec{f}_{1,2}$ 作用,可以通过式(14)求出 $\vec{f}_{1,2}$ 。再根据运动 定律可以求出粒子在引力 $\vec{f}_{1,2}$ 的作用下的运动加速度 \vec{a}_2 :

$$\vec{a}_2 = \frac{r_{1,2}}{m_2}$$
 (16)

文献[1]中使用的三角范数算子为乘积算子 T_P 。假设粒子 1、2 的惯性质量分别为 m_1 和 m_2 ,根据式(14)和式(16)有

$$\vec{a}_{2} = G \cdot \frac{T_{P}(m_{1}, m_{2})}{\|\vec{r}\|^{2}} \cdot \frac{\vec{r}}{\|\vec{r}\|} \cdot \frac{1}{m_{2}}$$

$$= G \cdot \frac{m_{1} \times m_{2}}{\|\vec{r}\|^{2}} \cdot \frac{\vec{r}}{\|\vec{r}\|} \cdot \frac{1}{m_{2}}$$

$$= G \cdot \frac{m_{1}}{\|\vec{r}\|^{2}} \cdot \frac{\vec{r}}{\|\vec{r}\|}$$
(17)

从上式可以看出,粒子 2 的惯性质量 m_2 在求加速度的 过程中被约去了,因此不管粒子 2 的惯性质量 m_2 是否等于 零,都不会出现粒子 2 的加速度等于无限大的问题。但我们 在使用其它的三角范数算子 S_2 、 T_2 和 T_L 时,粒子 2 的惯性 质量不能够约去,因此当粒子 2 的惯性质量等于零时,就会出 现粒子 2 的加速度等于无限大的问题,显然本文不允许这种 情况发生。

为了解决上述问题,我们变换一下式(4)和式(6)。对于 求最小值问题时,把式(4)改为:

$$worst(t) = (\max_{j \in \{1, \dots, N\}} fit_j(t)) + \epsilon$$
 (18)
式中, ε 是一个很小的赏数 把式(18)带人式(1)和式(2), 可

知每个粒子的惯性质量的大小在区间[0,1]上。

 $worst(t) = (\min_{j \in \{1, \dots, N\}} fit_j(t)) - \varepsilon$

式中, e 是一个很小的常数。把式(19)带入式(1)和式(2),可 知每个粒子的惯性质量的大小在区间[0,1]上。这样就很好 地解决了上述问题。

(19)

3 实验仿真与结果分析

本文的实验在 Windows XP 系统上,使用 Matlab R2009a 版本仿真。本文的实验都是寻找测试函数的最小值。为了叙 述方便,把用三角范数算子 S_Z 、 T_Z 、 T_{HD} 、 T_p 和 T_L 所替换对 应的引力搜索算法分别简称为 SZ-GSA、TZ-GSA、THD-GSA、TP-GSA⁺和 TL-GSA,而 TP-GSA 即为本文原算法 GSA。在 3.1节,我们使用单峰函数进行测试,3.2节使用多 峰函数进行测试。最后对一个多峰函数在不同密度的峰数情 况下进行测试,以证实测试函数的峰值密度对各个算法搜索 效果的影响。

3.1 单峰函数的测试与分析

在表1中,测试函数全是单峰函数,S是R"的子集,n代 表函数的维数,所有测试函数的最小值都为零。在本文中,函 数的维数 n=10,对每个函数分别用5个三角范数算子替换 相对应的引力搜索算法进行搜索,运行时每个算法分别迭代 500次。实验结果如表2所列。表2中 Mean 和 Std 分别表 示每个算法分别运行 30次时最优值的平均值和标准差。

表1 测试函数

测试函数	S
$F_1(X) = \sum_{i=1}^n x_i^2$	$[-100, 100]^n$
$F_2(X) = \sum_{i=1}^n (\sum_{j=1}^i x_j)^2$	$[-100, 100]^n$
$F_3(X) = \max\{ x_i , 1 \leq i \leq n\}$	$[-100, 100]^n$
$F_4(X) = \sum_{i=1}^{n-1} \left[100(x_{i+1} - x_i^2)^2 + (x_i - 1)^2 \right]$	$[-30, 30]^n$
$F_5(X) = \sum_{i=1}^{n} (\lfloor x_i + 0.5 \rfloor)^2$	$[-100, 100]^n$
$F_6(X) = \sum_{i=1}^n ix_i^4 + \text{random}[0, 1]$	$[-1.28, 1.28]^n$
$F_7(X) = \sum_{i=1}^n x_i^2 + (\sum_{i=1}^n 0.5ix_i)^2 + (\sum_{i=1}^n 0.5ix_i)^4$	[-10,10] ⁿ

表2 仿真结果

		Sz	Tz	T_{HD}	TP	TL
	Mean	347.4009	7.1918×10 ⁻¹⁰	6.9065×10 ⁻¹⁰	6.8068×10 ⁻¹⁰	1.3937×104
r1	Std	1.0041×10 ³	3.8175 $\times 10^{-10}$	3.5421×10 ⁻¹⁰	3.6102 \times 10 ⁻¹⁰	3. 4267×10^{3}
-	Mean	8. 4321×10 ³	550.6594	561.4946	11.0039	1.6513×10^{4}
r2	Std	3, 3845×10 ³	378.5130	405.2270	9.7435	4.2552×10 ³
F	Mean	10.2120	3.1384 $\times 10^{-7}$	2.0149×10 ⁻⁷	8.6645×10 ⁻⁹	65.6240
F 3	Std	18.8205	5.9906×10 ⁻⁸	3.1414×10 ^{−8}	1.7886×10 ^{−9}	4.8426
F	Mean	1.3883×107	148. 4185	374.1176	23, 6853	2. 8853×107
Г4	Std	1.2306×10^{7}	268. 4405	555. 1399	53.5364	1.4507 $\times 10^{7}$
-	Mean	7.7987×103	6.4290×10 ⁻¹⁰	6.0955×10 ⁻¹⁰	5,5607×10 ⁻¹⁰	1.4052×104
F 5	Std	3.8313×10 ³	2.6863×10 ⁻¹⁰	3.2376×10 ⁻¹⁰	2.6070 \times 10 ⁻¹⁰	3.5841 $ imes$ 103
r.	Mean	0.0598	0.0046	0,0055	0.0052	5.0739
г	Std	0.0339	0,0033	0.0045	0.0036	2.0905
-	Mean	345. 4363	345.4363	312.0855	25.1028	354.6346
F 7	Std	277.0855	277,0855	180.6964	11.4806	322, 7101

从表 2 可以看出,函数 F_1 、 F_2 、 F_3 、 F_4 、 F_5 和 F_7 用 GSA 所搜索到的最优值要好于其它的算法。而且从图 2 可以看 出,TP-GSA 对函数搜索的收敛性更远远好于其它的算法;对 于 TZ-GSA 和 THD-GSA,除了函数 F_6 用 TZ-GSA 搜索的结 果要好于 GSA 之外,其它函数的搜索结果都差不多。因为在 式(9)中存在一个随机数 rand,所以在某一时刻 t,粒子 i 的步 长 a⁴(t)是一个小范围内的随机值,因此两个搜索能力相近的 算法,不一定就能说明这两个算法搜索能力的好坏。并且从 图 2 可以看出,TZ-GSA 和 THD-GSA 的收敛性也差不多,而 SZ-GSA 和 TL-GSA 对表 1 中的函数几乎不收敛。

图 2 实验仿真图像

通过以上分析可以看出,对于单峰函数,不管从收敛性方 面还是从最后结果好坏角度去考虑,都应该用 GSA 进行搜 索;其次,仅仅从最后搜索到的结果精度来看,也可以用 TZ-GSA 和 THD-GSA 进行搜索;但从收敛性的角度看,最好还 是用 GSA 搜索。SZ-GSA 和 TL-GSA 对表 1 中的函数几乎 不收敛。从 2.1 节分析的三角范数性质知道,三角范数算子 S_2 和 T_L 分别是本文中所用到的 5 个三角范数算子中最强的 和最弱的,因此对于单峰函数,可以不用考虑用强于 S_2 和弱 于 T_L 的三角范数算子替换的引力搜索算法来搜索单峰函数 的最优值。

3.2 多峰函数的测试与分析

表 3 中全是多峰函数,其中函数 F_8 、 F_{10} 和 F_{11} 是低维多峰函数,其它为高维多峰函数。 $S \in R^n$ 的子集,f * 表示相对应函数的最小值,n代表函数的维数,在这里 n=10。实验结果如表 4 所列。表 4 中 Mean 表示运行 30 次最优值的平均值,Std 表示运行 30 次时最优值的标准差。

表 3 测试函数

测试函数	S	<i>f</i> *
$\overline{F_8(X) = (x_1 + 2x_2 - 7)^2 + (2x_1 + x_2 - 5)^2}$	$[-10, 10]^2$	0
$F_{9}(X) = (x_{1}-1)^{2} + \sum_{i=2}^{n} i(2x_{i}^{2}-x_{i-1})^{2}$	$[-10, 10]^n$	0
$F_{10}(X) = (1 + (x_1 + x_2 + 1)^2 (19 - 14x_1 + 13x_1^2))$	_	
$14x^2 + 6x_1x_2 + 3x_2^2) * (30 + (2x_1 + 3x_2)^2) (18 - 32x_1 + 12x_1^2 - 48x_2 - 36x_1) + (12x_1^2 - 48x_2 - 36x_2)^2 (18 - 32x_1 + 12x_1^2 - 48x_2 - 36x_2) + (12x_1^2 - 4x_2 - 36x_2) + (12x_1^2 - 36x_2 - 36x_2) + (12x_1^2 -$	$[-2,2]^2$	3
$x_2 + 27x_2^2))$		
$F_{11}(X) = -\cos(x_1)\cos(x_2)\exp(-(x_1 - \pi)^2 - (x_2 - \pi)^2)$	[-100,100]2	-1
$F_{12}(\mathbf{X}) = 20 + \mathbf{e} - 20\mathbf{e}^{-\frac{1}{5}}\sqrt{\frac{1}{n}\sum_{i=1}^{n}x_{i}^{2}} - \mathbf{e}^{-\frac{1}{n}\sum_{i=1}^{n}x_{i}^{2}}$	[-32,32] ⁿ	0
$F_{13}(X) = \sum_{i=1}^{n} \frac{x_i^2}{4000} - \prod_{i=1}^{n} \cos(\frac{x_i}{\sqrt{i}}) + 1$	[-600,600] ⁿ	0
$F_{14}(X) = 10n + \sum_{i=1}^{n} (x_i^2 - 10\cos(2\pi x_i))$	$[-5, 12, 5, 12]^n$	0
$F_{15}(X) = -\sum_{i=1}^{n} (x_i \sin \sqrt{ x_i })$	[-500,500] ⁿ	-418.98 <i>n</i>

为了更好地分析实验结果,首先分析表 3 中每个函数的 三维图像的特征。图 3 列出了部分函数的三维图像。对于函 数 F_8 、 F_9 和 F_{10} ,它们的最小值点周围的点的一阶导数的值 相对比较小,周围很平坦。典型的三维图像如图 3 中的函数 F₈ 的三维图像所示。对于函数 F₁₁和 F₁₂,它们的最小值点周 围的点的一阶导数的值相对比较大,而且它们的最小值和局 部最小值都分布在一个相对比较小的范围内,峰值分布密度 比较大,近似于锥形。典型的三维图像如图 3 中函数 F_{12} 的三 维图像所示。对于函数 F_{13} 、 F_{14} 和 F_{15} ,它们最小值点周围的 点的一阶导数值相对比较大,而且它们的最小值和局部最小 值都相对均匀地分散在比较大的范围内。典型的三维图像如 图 3 中函数 F_{13} 和 F_{15} 的三维图像所示。

图 4 实验仿真图像

从表 4 的实验结果可以看出,对于函数 F_8 、 F_9 、 F_{10} 、 F_{11} 和 F12 搜索到的结果和函数的收敛性还是用 GSA 算法比较 好。而对于函数 F₁₃、F₁₄和 F₁₅, TZ-GSA 和 THD-GSA 搜索 的结果和收敛性相对比较好。特别值得注意的是 SZ-GSA 对 函数 F15的搜索,它对该函数的搜索结果明显好于其它算法。 从图 4 也可以看出,SZ-GSA 对函数 F15 的收敛性也都远远好 于其它的算法。由 2.1 节可知,三角范数算子 Sz 是本文用到 的5个算子中最强的,根据式(9)可知,它相对的加速度也比 较大,因此它所替换的引力搜索算法很容易跳出局部最优值。 但从函数 F13 和 F14 的搜索结果又可以看出, 越强的三角范数 算子替换的引力搜索算法搜索到的结果不一定越好。对此可 以认为,当迭代一定次数而陷入局部最优值后,需要局部搜 索。这时和单峰函数一样,步长越小,搜索到的结果越好。因 此对于和函数 F15的二维图像分布相似的函数,搜索最优值 的算法的选择应该从能否从局部最优值跳出和搜索精度两方 面综合考虑来选一个合适步长的算法。从图 3 可以看出,函 数 F13 的局部最优值峰值的分布比 F15 的局部最优值峰值分 布的密度要大得多,因此对于函数 F15 应该使用比较强的三 角范数算子替换的引力搜索算法搜索,因为步长相对比较长 的算法更加容易跳出局部最优值。也就是说,函数局部最优 值分布密度小的,应该用比较强的三角范数算子替换的引力 搜索算法;函数局部最优值分布密度大的,应该用比较弱的三 角范数算子替换的引力搜索算法。

农* 历英和木						
		Sz	Tz	T _{HD}	TP	TL
	Mean	7.2240	9.4310×10 ⁻¹³	8. 3343×10 ⁻¹³	9.1037×10 ⁻¹³	7.2240
F8	Std	5.8237	1.4625×10 ⁻¹²	$1.7449 imes 10^{-12}$	1.5467×10 ⁻¹²	5.8237
F	Mean	1.0078×10^{4}	0.7309	1.4029	0.7074	8.6200×104
F 9	Std	7.0881 \times 10 ³	0.1534	1.9988	0.0780	4. 3790×104
r	Mean	40.2958	3.0000 -	3.0000	3,0000	40.2958
F ₁₀	Std	34.7973	0	0	0	34.7973
\mathbf{F}_{11}	Mean	-0.1169	-0.2010	-0.2686	-0.5484	-1.1334×10^{-11}
	Std	0.2462	0.2731	0.3001	0.3948	5.9455×10-11
	Mean	7.7117	5.9618	3, 5713	1.6148	19.7468
F 12	Std	1.2057	1,0109×10 ⁻⁷	5.8243×10 ⁸	2.7294×10 ⁻⁹	0.8581
_ 1	Mean	1.2770	0.0034	0.0024	0.0048	1,2770
F 13	Std	0.0648	0.0047	0.0048	0.0070	0.0648
E.	Mean	112. 3180	3. 3165	3. 5819	3, 5155	112.3180
F 14	Std	12. 4121	1.4151	1.6022	1.9331	12. 4121
n	Mean	$-2.1419 imes 10^{3}$	-1.5836×10^{3}	-1.4811×10^{3}	-1.5778×10^{3}	-1.3576×10^{3}
F 15	Std	246. 1643	213. 2992	240, 2957	211. 4813	250, 5114

主 人 化古姓甲

4 仿真结果

为了论证上述结论,这里用函数 F_{13} 做实验。设该函数 在这里的搜索空间为 S=[-5,5],函数的维数 n=10。对表 3 中函数 F_{13} 的每个变量 x_i 乘以一个常数 k,得到下面函数 F_{16} 。当 k 越大,函数 F_{13} 在一定范围内的局部最小值越多,也 就是局部峰值密度越大。表 5 为不同 k 值的情况下不同三角 范数算子替换的引力搜索算法搜索到的对应结果。

 $F_{16}(X) = \sum_{i=1}^{n} \frac{(k \cdot x_i)^2}{4000} - \prod_{i=1}^{n} \cos(\frac{k \cdot x_i}{\sqrt{i}}) + 1$

K		Sz	Tz	THD	TP	T_L	
0.1	Mean	0,0393	1.5267	1.6073	1. 4044	0.0393	
0.1	Std	0.0092	1.2902	1.7273	7.5874	0.0092	
1.5	Mean	0.2204	0,0035	0,0022	0.0200	0.9715	
1.5	Std	0.2327	0,0050	0.0038	0.0561	0.0467	
	Mean	0.9415	0.0029	0.0031	0.0046	0.6410	
2.0	Std	0.0986	0.0059	0,0055	0,0085	0.9415	
2.0	Mean	1.0627	0.0019	0.0025	0.0039	1.0627	
3.0	Std	0.0447	0.0052	0.0049	0,0083	0.0447	
	Mean	1.0989	0,0014	0,0032	0,0020	1.0989	
4.0	Std	0.0952	0.0038	0,0069	0.0048	0.0952	
F 0	Mean	1.2040	0.0010	0.0023	0.0016	1.2040	
5.0	Std	0.0756	0.0039	0.0050	0.0039	0.0756	
6.0	Mean	1, 3058	0, 0031	0, 0033	0.0048	1, 3058	
6.0	Std	0.0691	0.0052	0.0069	0,0071	0.0691	
7.0	Mean	1.4599	0.0014	0.0039	0.0044	1.4599	
7.0	Std	0.1075	0.0038	0.0052	0.0068	0.1075	
<u>ه</u> م	Mean	1,5685	0,0026	0,0033	0.0025	1.5285	
0.0	Std	0.1194	0.0053	0,0053	0.0048	0.1194	
0.0	Mean	1.6994	0,0017	0,0024	0.0030	1.6994	
9.0	Std	0.1576	0.0048	0.0046	0.0056	0.1576	
10.0	Mean	1.8887	0,0044	0,0024	0.0021	1.8887	
10.0	Std	0.1566	0.0061	0.0042	0.0043	0.1566	

表5 仿真结果

当k=0.1时,函数 F_{16} 只有一个最小值,即为单峰函数, 表 5 中相对应的结果符合 5 个算法的搜索结果。当k等于 2.0、3.0、4.0、5.0、6.0、7.0 和 9.0 时, F_{16} 为多峰函数,而且各 个峰值之间都存在一定的距离,这时需要步长比较大的算法 搜索最优值;当k等于 6.0、7.0 和 9.0 时, F_{16} 为多峰函数,而 且各个峰值之间都存在一定的距离,这时需要步长比较大的 算法搜索最优值。从表 5 中的结果可以看出,这时 TZ-GSA 搜索到的结果最好,这几乎符合上节的结论。当 k 等于 1.5 和 9.0 时,THD-GSA 搜索结果最好,这是因为当 k 等于 1.5 时,函数 F_{16} 为多峰函数,而且它们的各峰值之间的距离足够 大,以致于本文所提到的 5 个算法的步长都没有足够大从而 跳不出局部最优值。因此在陷入最优值后,相当于搜索单峰 函数,这时算法的步长越短,搜索到的效果越好;而当 k 等于 9.0 时,函数 F_{16} 也为多峰函数,这时步长越小,反而搜索到的 效果可能越好,这是因为这时峰值之间的距离比较小,以致于 本文提到的 5 个算法步长都足够长而很容易跳出局部最优 值。这时算法的步长越小,反而搜索到的效果也有可能越好, 这与多峰函数且峰值密度很大的情况相似。当 k 等于 10.0 时,TP-GSA 搜索的结果最好,这种情况可以和 k 等于 9.0 时 的情况一样理解。

结束语 本文在引力搜索算法基础上根据三角范数的性 质而变换出了其他几种引力搜索算法。针对测试函数二维图 像特征,应该使用相应的三角范数算子替换出的引力搜索算 法搜索它的最优值。由第3节可知,对于多峰函数,且它们的 峰值分布均匀,密度不是太大也不是太小的情况下,应该尽量 使用比较强的三角范数算子,这样搜索最优值时,它的搜索 能力和收敛速度都比较好。而对于其它特征的测试函数, 应该使用原来的算法,即 TP-GSA。我们还可以得出结 论:对于强于 S_Z 和弱于 T_L 的三角范数算子,可以不用考 虑替换。

参考文献

- [1] Rashedi E, Nezamabadi-Pour H, Saryazdi S. GSA: A Gravitational Search Algorit-hm [J]. Information Sciences, 2009, 179 (13):2232-2248
- [2] Kennedy J, Eberhart R C. Particle swarm optimi-zation[C] // IEEE International Conference on NeuralNetwork. Perth, Australia, 1995,4:1942-1948
- [3] Formato R A. Studies in Computational Intelli-gence[M]. Heidelberg, Berlin, ElisabethRakus-Anders-son, 2008; 221-238
- [4] Klement E P, Mesiar R, Pap E. Triangular Norms[M]. Kluwer

Academic Publishers, 2000

- [5] Alsina C, Frank M J, Schweizer B. Associative Functions: Triangular Norms and Copulas[M]. WorldScientific Publishing Company, 2006
- [6] 罗敏霞,何华灿.基于幂零泛与运算模型的命题模糊逻辑[J].计 算机科学,2004,31(8),97-99

(上接第 207 页)

价和优劣比较,根据4.2节的灰熵绝对关联分析评价模型流 程图进行综合评价,具体步骤如下所示。

表 1 嵌入式计算机比较序列与参考序列的无量纲数据

指标	\mathbf{x}_0	x ₁	x ₂	x ₃
U11	1,0000	1.0000	1,0000	1.0000
U_{12}	1.4189	2.5803	0,9784	3.4400
U_{13}	1.4354	2,2802	1.1149	4.4800
U_{21}	1.4849	2,6103	1,1263	3,6000
U22	1.5344	2.6103	1.1149	5,3600
U23	1,3859	2.3702	1.0125	4.3200
U_{24}	1, 3694	2.2802	1.0011	4.4800
U31	1.6169	2,9403	1.1149	6.2400
U_{32}	1.4354	2,5803	1.0125	5,1200
U_{33}	1.4354	2.6103	1,0011	4.4800
U_{41}	1.1219	1,3201	0,9898	0.9600
U_{42}	1.2704	1.9502	1.0125	2,5600
U_{43}	1.2209	2.0102	0.8874	3.6000
U44	1.2869	2,3402	0.8874	4.4800
U_{51}	1.4519	2,6703	0, 9898	6.0800
U52	1.4519	2.3702	1, 1149	5.3600
U_{53}	0.5494	0,9991	0.3788	2.6640
U_{54}	1.0889	1.6802	0.8646	3.6000
U61	1.5014	2.6403	1.0694	6,2400
U_{62}	1.3694	2,2802	1.0125	4, 4800

表 2 比较序列的灰色绝对关联系数

k	r ₀₁	r ₀₂	r ₀₃
1	0, 4627	0.6942	0. 3310
2	0.7595	0.8929	0.4942
3	0.7809	0.9633	0.5183
4	0.9528	0.9426	0.3689
5	0,9161	0.9559	0.5287
6	0.9315	0.9949	0.8500
7	0,7079	0.8821	0.3980
8	0,8485	0.9267	0.5159
9	0,9709	0.9887	0.6098
10	0.5059	0.7679	0.2377
11	0.6749	0.8883	0.4079
12	0.9013	0.9297	0.4786
13	0.7911	0.9381	0.5513
14	0.8583	0.9411	0.4107
15	0.7692	0.8888	0.5814
16	0.6809	0,8573	0.3580
17	0.8760	0.9490	0.7161
18	0.6462	0.8280	0,3098
19	0.8143	0.9301	0,3805

步骤1 建立层次结构模型

根据嵌入式计算机性能参数指标和能够适应未来环境发展的需求,构建了3层的评价指标体系,如图1所示。

步骤 2 确定参考序列和比较序列

参考序列 x₀ 是通过统计方法从众多性能较好的嵌入式 计算机中得到的相关指标数据而构造的,比较序列 x₁,x₂,x₃

- [7] 陈丹,何华灿,王晖.基于连续可控T范数的模糊控制方法研究[J].控制理论与应用,2001,18(5):717-721
- [8] Schutz B. Gravity from the Ground Up[M]. Cambridge University Press, 2003
- [9] Holliday D, Resnick R, Walker J. Fundamentalsof physics [M]. John Wiley and Sons, 1993

分别是由 A、B、C 3 种嵌入式计算机根据相关指标得到的数据,并采用初值像对序列 x_i,i=0,1,2,3 进行无量纲处理,处理结果如表 1 所列。

步骤 3 计算比较序列的灰色绝对关联系数 r_{0i}(k),(*i*=1,2,3)。

根据式(6),得到比较序列的灰色绝对关联系数如表 2 所 列。

步骤4 计算灰熵绝对关联度

根据式(2)和式(3),计算比较序列的灰绝对关联熵 *H*(*p_i*)分别为:

 $H(p_1)=2.9278, H(p_2)=2.9410, H(p_3)=2.9004$ 则根据式(4),得到灰熵绝对关联度 $E_r(x_i)$ 分别为:

 $E_r(x_1)=0.9943, E_r(x_2)=0.9988, E_r(x_3)=0.9850$

步骤5 进行综合评价

将灰熵绝对关联度 $E_r(x_i), i=1,2,3$ 按由大到小的顺序 进行排列,显然有 $E_r(x_2) > E_r(x_1) > E_r(x_3)$ 。

这表明 A、B、C 3 种嵌入式计算机中,B 型嵌入式计算机 的综合性能最优,其次是 A 型嵌入式计算机,最后为 C 型嵌 入式计算机。评价结果与实际使用中的性能表现相符。

结束语 本文将灰熵理论与灰色绝对关联分析理论相结 合,提出了灰熵绝对关联分析评价模型,该模型有效地解决了 传统灰熵关联分析的不唯一性,提高了嵌入式计算机性能评 估的准确性和有效性,为今后嵌入式计算机综合性能的评价 提供了有价值的参考。

参考文献

- Kahrman C, Cevik S, Ates N Y, et al. Fuzzy multi-criteria evaluation of industrial robotic systems[C] // Omputer & Industrial Engineering. 2007, 52: 414-433
- [2] 邓聚龙. 灰色系统基本方法[M]. 武汉:华中理工大学出版社, 2006
- [3] 吕锋,刘翔,等. 七种灰色系统关联度的比较研究[J]. 武汉工业 大学学报,2000,22(2):41-44
- [4] 张岐山,郭喜江,邓聚龙. 灰关联熵分析法[J]. 系统工程理论与 实践,1996(8):7-11
- [5] **郭齐胜,董志明,单家元.系统建模**[M].北京:国防工业出版社, 2006
- [6] 邓聚龙. 灰色系统理论教程[M]. 武汉:华中理工大学出版社, 1990:3-84
- [7] 郑子华,陈家祯,陈利永.基于灰色绝度关联度的边缘检测算法[J]. 福建师范大学学报,2004,20(4):20-23
- [8] 梅振国. 灰色绝对关联度及其计算方法[J]. 系统工程,1993,10 (5):43-44