计算机科学 ›› 2015, Vol. 42 ›› Issue (7): 57-61.doi: 10.11896/j.issn.1002-137X.2015.07.013

• 2014’全国理论计算机科学年会 • 上一篇    下一篇

三值量子基本门及其对量子Fourier变换的电路实现

樊富有,杨国武,张 艳,杨 钢   

  1. 电子科技大学计算机科学与工程学院 成都611731;宜宾学院计算机与信息工程学院 宜宾644007,电子科技大学计算机科学与工程学院 成都611731,电子科技大学计算机科学与工程学院 成都611731,电子科技大学计算机科学与工程学院 成都611731
  • 出版日期:2018-11-14 发布日期:2018-11-14
  • 基金资助:
    本文受国家自然科学基金项目(61272175),四川省科技厅项目(2012JY009),四川省教育厅重点项目(2011ZA173)资助

Three-valued Quantum Elementary and Implementation of Quantum Fourier Transform Circuit

FAN Fu-you, YANG Guo-wu, ZHANG Yan and YANG Gang   

  • Online:2018-11-14 Published:2018-11-14

摘要: 理论上可以把量子基本门组合在一起来实现任何量子电路和构建可伸缩的量子计算机。但由于构建量子线路的量子基本门数量庞大,要正确控制这些量子门十分困难。因此,如何减少构建量子线路的基本门数量是一个非常重要和非常有意义的课题。提出采用三值量子态系统构建量子计算机,并给出了一组三值量子基本门的功能定义、算子矩阵和量子线路图。定义的基本门主要包括三值量子非门、三值控制非门、三值Hadamard门、三值量子交换门和三值控制CRk门等。通过把量子Fourier变换推广到三值量子态,成功运用部分三值量子基本门构建出能实现量子Fourier变换的量子线路。通过定量分析发现,三值量子Fourier变换的线路复杂度比二值情况降低了至少50%,表明三值量子基本门在降低量子计算线路复杂度方面具有巨大优势。

关键词: 量子计算,三值量子基本门,量子Fourier变换,量子电路综合

Abstract: In theory,quantum elementary gates can be put together to implement any quantum circuit and build a scalable quantum computer.Because the number of quantum elementary gates required to build quantum logic circuits is too large,exactly controlling them is not easy.Therefore,how to reduce the number of quantum elementary gates to build quantum circuits is a very important and significant topic.Three-level quantum system was proposed to build quantum computer in this paper,and a set of three-valued quantum elementary gates were defined,including function,operator matrix,quantum circuit diagram.These elementary gates mainly includ e three-valued quantum NOT gate,three-valued quantum controlled-NOT gate,three-valued Hadamard gate,three-valued quantum SWAP gate and three-valued CRk gate and so on.This paper extended the quantum Fourier transform(QFT) to three-valued quantum states,and quantum circuits were successfully built to implement QFT with partial three-valued quantum elementary gates.By the quantitative analysis,the complexity of three-valued QFT circuit is lower than two-valued case at least 50%.The result indicates that the three-valued quantum elementary gates have a huge advantage in respect of reducing the circuit complexity about quantum computation.

Key words: Quantum computation,Three-valued quantum elementary gates,Quantum Fourier transform,Synthesis of quantum circuit

[1] Landauer R.Irreversibility and heat generation in the computing process[J].IBM journal of research and development,1961,5(3):183-191
[2] Feynman R P.Simulating physics with computers[J].International Journal of Theoretical Physics,1982,21(6):467-488
[3] Deutsch D.Quantum theory,the Church-Turing principle andthe universal quantum computer[J].Proceedings of the Royal Society of London,A Mathematical and Physical Sciences,1985,400(1818):97-117
[4] Deutsch D.Quantum computational networks[J].Proceedings of the Royal Society of London.A.Mathematical and Physical Sciences,1989,425(1868):73-90
[5] Muthukrishnan A,Stroud Jr C R.Multivalued logic gates forquantum computation[J].Physical Review A,2000,62(5)
[6] Di Y M,Wei H R.Elementary gates for ternary quantum logic circuit[J].arXiv preprint arXiv:1105.5485,2011
[7] Yang G,Song X,Perkowski M,et al.Realizing ternary quantum switching networks without ancilla bits[J].Journal of Physics A:Mathematical and General,2005,38(44):9689-9697
[8] Yang G,Xie F,Song X,et al.Universality of 2-qudit ternary reversible gates[J].Journal of Physics A:Mathematical and Gener-al,2006,39(24):7763-7773
[9] Di Y M,Wei H R.Synthesis of multivalued quantum logic circuits by elementary gates[J].Physical Review A,2013,87(1):1-9
[10] Klimov A B,Guzman R,Retamal J C,et al.Qutrit quantumcomputer with trapped ions[J].Physical Review A,2003,67(6):235-238
[11] Lanyon B P,Barbieri M,Almeida M P,et al.Simplifying quantum logic using higher-dimensional Hilbert spaces[J].Nature Physics,2009,5(2):134-140
[12] Nielsen M A,Chuang I L.Quantum computation and quantuminformation[M].Cambridge University Press,2010:218

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 雷丽晖,王静. 可能性测度下的LTL模型检测并行化研究[J]. 计算机科学, 2018, 45(4): 71 -75, 88 .
[2] 夏庆勋,庄毅. 一种基于局部性原理的远程验证机制[J]. 计算机科学, 2018, 45(4): 148 -151, 162 .
[3] 厉柏伸,李领治,孙涌,朱艳琴. 基于伪梯度提升决策树的内网防御算法[J]. 计算机科学, 2018, 45(4): 157 -162 .
[4] 王欢,张云峰,张艳. 一种基于CFDs规则的修复序列快速判定方法[J]. 计算机科学, 2018, 45(3): 311 -316 .
[5] 孙启,金燕,何琨,徐凌轩. 用于求解混合车辆路径问题的混合进化算法[J]. 计算机科学, 2018, 45(4): 76 -82 .
[6] 张佳男,肖鸣宇. 带权混合支配问题的近似算法研究[J]. 计算机科学, 2018, 45(4): 83 -88 .
[7] 伍建辉,黄中祥,李武,吴健辉,彭鑫,张生. 城市道路建设时序决策的鲁棒优化[J]. 计算机科学, 2018, 45(4): 89 -93 .
[8] 刘琴. 计算机取证过程中基于约束的数据质量问题研究[J]. 计算机科学, 2018, 45(4): 169 -172 .
[9] 钟菲,杨斌. 基于主成分分析网络的车牌检测方法[J]. 计算机科学, 2018, 45(3): 268 -273 .
[10] 史雯隽,武继刚,罗裕春. 针对移动云计算任务迁移的快速高效调度算法[J]. 计算机科学, 2018, 45(4): 94 -99, 116 .