计算机科学 ›› 2019, Vol. 46 ›› Issue (4): 235-240.doi: 10.11896/j.issn.1002-137X.2019.04.037

• 人工智能 • 上一篇    下一篇

利用最近邻域推荐且结合情境感知的个性化推荐算法

张宏丽1, 白翔宇2, 李改梅1   

  1. 内蒙古师范大学教育信息技术学院 呼和浩特0100221
    内蒙古大学计算机学院 呼和浩特0100212
  • 收稿日期:2018-09-27 出版日期:2019-04-15 发布日期:2019-04-23
  • 通讯作者: 李改梅(1968-),女,硕士,副教授,主要研究领域为计算机应用,E-mail:zhouzihui1974@163.com(通信作者)。
  • 作者简介:张宏丽(1974-),女,博士,副教授,主要研究领域为个性化推荐、人工智能等;白翔宇(1974-),男,博士,教授,主要研究领域为数据挖掘、人工智能等
  • 基金资助:
    本文受内蒙古自治区自然科学基金项目(2015MS0634),内蒙古自治区高等学校科学技术项目(NJZY033)资助。

Personalized Recommendation Algorithm Based on Recent Neighborhood Recommendation and Combined with Context Awareness

ZHANG Hong-li1, BAI Xiang-yu2, LI Gai-mei1   

  1. College of Educational Information Technology,Inner Mongolia Normal University,Hohehot 010022,China1
    College of Computer Science,Inner Mongolia University,Hohehot 010021,China2
  • Received:2018-09-27 Online:2019-04-15 Published:2019-04-23

摘要: 针对传统情境感知推荐算法推荐精确度低和适用环境受限等问题,提出了一种可行的解决方案。该方案可以根据检测到的情境信息找到相关的媒体内容,比仅依赖特征提取的方案更有效。首先,利用情境数据和搜索信息来识别所选项的情境与特定情境中用户的兴趣度之间的隐藏关系,并构建未知排名的推荐模型。然后,通过使用给定的情境列表来计算用户对项目的预期排名分数,从而进行情境感知评级。根据用户的情境参与选择新项目,从而使检测到的情境有助于促进对相关项目的搜索。进一步使用优化函数来最大化结果推荐的平均精度(MAP)。实验结果表明,与目前较为先进的两种算法相比,提出的方法表现出了比传统协同过滤算法更好的性能,且分别使平均绝对误差值降低了1.8%和1.2%,在推荐精确度和召回率方面也均优于两种对比方法。

关键词: 个性化推荐算法, 最近邻域推荐, 隐式兴趣度, 情境感知

Abstract: Aiming at the problem that the traditional context-aware recommendation algorithm is not accurate and the applicable environment is limited,this paper proposed a feasible solution.It can find relevant media content based on the detected context information,which is more effective than relying solely on feature extraction.First,the context data and the search information are used to identify a hidden relationship between the selected context and the user’s interest in a particular context,and a recommendation model of the unknown ranking is constructed.The contextually perceived ra-ting of the user’s expected ranking score is then calculated by using the given contextual list.The user’s situation is used to participate in the selection of new items so that the detected situation helps to facilitate the search for related items.The optimization function is further used to maximize the average accuracy (MAP) of the result recommendation.The experimental results show that compared with the more advanced algorithms,the proposed method shows betterperformance than the traditional collaborative filtering algorithm,and the absolute error value is reduced by 1.8% and 1.2% respectively in the recommendation accuracy and recall.The rate is also superior to the two comparison methods.

Key words: Personalized recommendation algorithm, Recent neighborhood recommendation, Implicit interest, Context awareness

中图分类号: 

  • TP391
[1]JUNG H,CHUNG K.P2P context awareness based sensibility design recommendation using color and bio-signal analysis[J].Peer-to-Peer Networking and Applications,2016,9(3):546-557.
[2]WANNENBURG J,MALEKIAN R.Physical Activity Recognition From Smartphone Accelerometer Data for User Context Awareness Sensing[J].IEEE Transactions on Systems Man & Cybernetics Systems,2017,47(12):3142-3149.
[3]GE G L,YUAN L Y,WANG X C.Personalized user interest modeling based on context aware[J].Application Research of Computers,2017,34(4):995-999.(in Chinese) 葛桂丽,袁凌云,王兴超.基于情境感知的用户个性化兴趣建模[J].计算机应用研究,2017,34(4):995-999.
[4]LI F L,CHEN D X,LIANG S X.Research on Personalized Re- commendation Method Based on Semantic Association and Context Awareness[J].Journal of Intelligence,2015,37(10):189-195.(in Chinese) 李枫林,陈德鑫,梁少星.基于语义关联和情景感知的个性化推荐方法研究[J].情报杂志,2015,37(10):189-195.
[5]SHEN N Y,LI Q Y.Personalized Recommendation Algorithm Based on Context-Aware Technology[J].Computer Systems & Applications,2017,26(9):135-139.(in Chinese) 时念云,李秋月.基于情境感知的个性化推荐算法[J].计算机系统应用,2017,26(9):135-139.
[6]LIANG Z Y.Research and Application of Personalized Recommendation Algorithm Based on Context Awareness[D].Taiyuan:North University of China,2017.(in Chinese) 梁卓越.基于情境感知的个性化推荐算法研究与应用[D].太原:中北大学,2017.
[7]ALHAMID M F,RAWASHDEH M,OSMAN H A,et al.Towards context-sensitive collaborative media recommender system[J].Multimedia Tools & Applications,2015,74(24):11399-11428.
[8]CHEN J M,CHEN M C,SUN Y S.A tag based learning approach to knowledge acquisition for constructing prior know-ledge and enhancing student reading comprehension[M].Else-vier Science Ltd,2014.
[9]LI J W,LIU Y L,QIN X L.Context-dependent Double-layered Data Model for Indoor Space[J].Computer Science,2017,44(8):187-192.(in Chinese) 李敬雯,刘宇雷,秦小麟.一个情境相关的双层室内空间数据模型[J].计算机科学,2017,44(8):187-192.
[10]LEE H S,KWON S Y,LIM J H.A Development of a Lighting Control System Based on Context-Awareness for the Improvement of Learning Efficiency in Classroom[J].Wireless Personal Communications,2016,86(1):165-181.
[11]LIU B,LI W S.Indoor Positioning Method Based on Cosine Similarity of Fingerprint Matching Algorithm[J].Bulletin of Science and Technology,2017,33(3):198-202.(in Chinese) 刘冰,李文书.基于余弦相似度的指纹匹配算法的室内定位方法[J].科技通报,2017,33(3):198-202.
[12]CHEN D,JIN D,GOH T T,et al.Context-Awareness Based Personalized Recommendation of Anti-Hypertension Drugs[J].Journal of Medical Systems,2016,40(9):1-10.
[13]HAO D H,GUAN W G,ZOU L J,et al.Fast virtual grid matching localization algorithm based on Pearson correlation coefficient[J].Journal of Computer Applications,2018,38(3):763-768.(in Chinese) 郝德华,关维国,邹林杰,等.基于Pearson相关系数的快速虚拟网格匹配定位算法[J].计算机应用,2018,38(3):763-768.
[14]ZHANG J,ZHANG C,ZHU Q S.Adaptive Nearest Neighbor Algorithm with Dynamic Neighborhood[J].Computer Science,2017,44(12):194-201.(in Chinese) 冯骥,张程,朱庆生.一种具有动态邻域特点的自适应最近邻居算法[J].计算机科学,2017,44(12):194-201.
[15]SUN B,LI L,WU X,et al.Combining feature-level and decision-level fusion in a hierarchical classifier for emotion recognition in the wild[J].Journal on Multimodal User Interfaces,2016,10(2):125-137.
[16]A H K,B M P.Template Extraction from Heterogeneous Web Pages with Cosine Similarity[J].International Journal of Computer Applications,2014,87(3):4-8.
[17]WANG W,JIANG Q,LV T,et al.An improved text similarity algorithm research for clinical decision support system[C]∥International Conference on Cloud Computing and Intelligence Systems.IEEE,2016:155-159.
[18]CHEN X,ZHENG Z,LYU M R.QoS-Aware Web Service Recommendation via Collaborative Filtering[M]∥Web Services Foundations.New York:Springer,2014.
[19]KURAHASHI A M,STINSON J N,WYK M V,et al.The Perceived Ease of Use and Usefulness of Loop:Evaluation and Content Analysis of a Web-Based Clinical Collaboration System[J].Jmir Hum Factors,2018,5(1):217-230.
[20]SHI Y,LARSON M,HANJALIC A.Mining contextual movie similarity with matrix factorization for context-aware recommendation[J].Acm Transactions on Intelligent Systems & Technology,2013,4(1):1-19. ZHONG X Y,LIU Y B,XIAO Y P.A user recommendation scheme based on similar community and node role division in social network.Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition),2016,28(4):525-532.(in Chinese) 钟晓宇,刘宴兵,肖云鹏.一种基于相似社团和节点角色划分的社交网络用户推荐方案.重庆邮电大学学报(自然科学版),2016,28(4):525-532.
[1] 韩立, 刘正捷. CAUXT:帮助研究人员在感兴趣的情境中采集用户体验数据[J]. 计算机科学, 2018, 45(7): 278-285, 321.
[2] 何佶星,陈汶滨,牟斌皓. 流行度划分结合平均偏好权重的协同过滤个性化推荐算法[J]. 计算机科学, 2018, 45(6A): 493-496.
[3] 郭斌,陈荟慧,李文鹏,於志文,姜佳君,王文辉. 记忆计算:概念、特性及研究进展[J]. 计算机科学, 2016, 43(9): 32-38.
[4] 徐步刊,周兴社,梁韵基,王海鹏,於志文. 一种场景驱动的情境感知计算框架[J]. 计算机科学, 2012, 39(3): 216-222.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张佳男,肖鸣宇. 带权混合支配问题的近似算法研究[J]. 计算机科学, 2018, 45(4): 83 -88 .
[2] 史雯隽,武继刚,罗裕春. 针对移动云计算任务迁移的快速高效调度算法[J]. 计算机科学, 2018, 45(4): 94 -99, 116 .
[3] 周燕萍,业巧林. 基于L1-范数距离的最小二乘对支持向量机[J]. 计算机科学, 2018, 45(4): 100 -105, 130 .
[4] 刘博艺,唐湘滟,程杰仁. 基于多生长时期模板匹配的玉米螟识别方法[J]. 计算机科学, 2018, 45(4): 106 -111, 142 .
[5] 王帅,刘娟,毕姚姚,陈哲,郑群花,段慧芳. 基于两步聚类和随机森林的乳腺腺管自动识别方法[J]. 计算机科学, 2018, 45(3): 247 -252 .
[6] 耿海军,施新刚,王之梁,尹霞,尹少平. 基于有向无环图的互联网域内节能路由算法[J]. 计算机科学, 2018, 45(4): 112 -116 .
[7] 崔琼,李建华,王宏,南明莉. 基于节点修复的网络化指挥信息系统弹性分析模型[J]. 计算机科学, 2018, 45(4): 117 -121, 136 .
[8] 李珊,饶文碧. 基于视频的矿井中人体运动区域检测[J]. 计算机科学, 2018, 45(4): 291 -295 .
[9] 廖星,袁景凌,陈旻骋. 一种自适应权重的并行PSO快速装箱算法[J]. 计算机科学, 2018, 45(3): 231 -234, 273 .
[10] 郑秀林,宋海燕,付伊鹏. MORUS-1280-128算法的区分分析[J]. 计算机科学, 2018, 45(4): 152 -156 .