计算机科学 ›› 2018, Vol. 45 ›› Issue (11A): 573-575.

• 综合、交叉与应用 • 上一篇    下一篇

基于CUDA架构的改进Marching Cubes算法

周筠1, 蒋富2   

  1. 湖南财政经济学院信息技术与管理学院 长沙4102051
    中南大学信息科学与技术学院 长沙4100752
  • 出版日期:2019-02-26 发布日期:2019-02-26
  • 通讯作者: 周 筠(1984-),女,博士,讲师,主要研究方向为虚拟现实技术、有限元网格生成方法等,E-mail:jzyf0403@163.com
  • 作者简介:蒋 富(1983-),男,博士,副教授,主要研究方向为虚拟现实、医学数据可视化等。
  • 基金资助:
    本文受湖南省教育厅科学研究基金项目:虚拟手术仿真系统中的交互式建模技术研究(13C095)资助。

Improved Marching Cubes Based on CUDA

ZHOU Yun1, JIANG Fu2   

  1. Department of Information Management,Hunan University of Finance and Economics,Changsha 410205,China1
    School of Information Science and Engineering,Central South University,Changsha 410075,China2
  • Online:2019-02-26 Published:2019-02-26

摘要: Marching Cubes是医学体数据可视化的经典算法,但生产的网格质量差、算法执行速度慢成为阻碍其用于数值分析的两个主要缺点。文中提出一种基于硬件加速的Marching Cubes改进算法。该算法采用统一设备架构(CUDA)充分发挥Marching Cubes算法分而治之的优点,利用CUDA的可编程性并行分类体数据,加快了活跃体素和活跃边的提取;同时,该改进算法将得到的活跃边按照中点投影方式进行偏移,从而达到了改善网格质量的目的。最后通过实验表明,该算法可以保证在阈值未知的情况下,进行交互式的高质量网格建模。

关键词: CUDA, Marching Cubes, 医学体数据, 中点投影

Abstract: Marching Cubes (MC) is one of the classical algorithms for medical volume data.But poor mesh quality and slow execution speed have affected the further development such as finite element analysis.In this paper,an improved MC algorithm was presented based on the CUDA.Three kinds of parallel computing were proposed to extract active volumes and edges in the CUDA.Simultaneously,point projection was used in the algorithm to move the endpoints of the active edges and improve the mesh quality.Finally,experimental results show that the presented method can realize the interactive modeling.

Key words: CUDA, Marching Cubes, Medical volume data, Point projection

中图分类号: 

  • TP391
[1]LORENSEN W,CLINE H.Marching Cubes:A High Resolution 3DSurface Construction Algorithm[J].Computer Graphics(S0097-8930),1987,21(4):163-169.
[2]朱恺.基于改进MC算法的脑图谱三维可视化应用研究 [D].太原:太原理工大学,2015.
[3]CHANG M,WOONG O J,CHANG D S,et al.Interactive marching cubes algorithm for intraoral scanners [J].The International Journal of Advanced Manufacturing Technology,2017,89(5):2053-2062.
[4]周筠,樊晓平,蒋富.医学仿真中一种高效的生物组织几何建模方法 [J].系统仿真学报,2012,24(1):6-10.
[5]SUN L N,TIAN H Q,WU D M,et al.Three-Dimensional Geometric Modeling of the SpineBased on Reverse Engineering Technology [C]∥3rd International Conference on Biomedical Engineering and Informatics.2010:1292-1295.
[6]王明,冯洁青,杨贲.移动立方体算法与移动四面体算法的对比与评估 [J].计算机辅助设计与图形学学报,2014,26(12):2009-2106.
[7]CIZNICKI M,KIERZYNKA M,KUROWSKI K,et al.Efficient Isosurface Extraction Using MarchingTetrahedra and Histogram Pyramidson Multiple GPUs [C]∥International Confe-rence on Parallel Processing and Applied Mathematics.2011:343-352.
[8]RECK F,DACHSBACHER C,GROSSO R,et al.Realtime isosurface extraction with graphics hard-ware [R].Eurographics Short Presentations,2004.
[9]汤颖,嵇海锋,盛风帆,等.大规模森林多精度生长仿真模型及其计算加速算法[J].小型微型计算机系统,2016,37(5):1033-1038.
[10]HAN S Q,LEI Z,SHEN W F,et al.An Approach to Improving the Performance of CUDA in Virtual Environment [C]∥IEEE/ACIS International Conference on Software Engineering,Artificial Intelligence,Networking and Parallel/Distributed Computing (SNPD).2016:585-590.
[11]DIETRICH C A,SCHEIDEGGER C E,SCHREINER J,et al.Edge transformations for improving mesh quality of marching cubes [J].IEEE Transactions on Visualization and Computer Graphics,2009,15(1):150-159.
[12]DIETRICH C A,SCHEIDEGGER C E,COMBA J L D.Edge groups:an approach to understanding the mesh quality of marching methods[J].IEEE Transactions on Visualization and Computer Graphics,2008,14(6):1651-1666.
[1] 汪晋, 刘江.
基于GPU的并行DILU预处理技术
GPU-based Parallel DILU Preconditioning Technique
计算机科学, 2022, 49(6): 108-118. https://doi.org/10.11896/jsjkx.210300259
[2] 文敏华, 汪申鹏, 韦建文, 李林颖, 张斌, 林新华.
基于DGX-2的湍流燃烧问题优化研究
DGX-2 Based Optimization of Application for Turbulent Combustion
计算机科学, 2021, 48(12): 43-48. https://doi.org/10.11896/jsjkx.201200129
[3] 汪亮, 周新志, 严华.
基于GPU的实时SIFT算法
Real-time SIFT Algorithm Based on GPU
计算机科学, 2020, 47(8): 105-111. https://doi.org/10.11896/jsjkx.190700036
[4] 许新鹏, 胡斌星.
基于ICCG法的飞行器部件强度校核快速计算方法
Fast Calculation Method of Aircraft Component Strength Check Based on ICCG
计算机科学, 2020, 47(11A): 624-627. https://doi.org/10.11896/jsjkx.191100154
[5] 郑红波, 石豪, 杜轶诚, 张美玉, 秦绪佳.
光照不均匀的结构光图像的条纹快速提取方法
Fast Stripe Extraction Method for Structured Light Images with Uneven Illumination
计算机科学, 2019, 46(5): 272-278. https://doi.org/10.11896/j.issn.1002-137X.2019.05.042
[6] 张劼,文敏华,林新华,孟德龙,陆豪.
基于历史模拟法的风险价值算法在GPU上的实现和优化
Implementation and Optimization of Historical VaR on GPU
计算机科学, 2018, 45(5): 291-294. https://doi.org/10.11896/j.issn.1002-137X.2018.05.050
[7] 刘端阳, 郑江帆, 沈国江, 刘志.
基于CUDA的k-means算法并行化研究
Study on Parallel K-means Algorithm Based on CUDA
计算机科学, 2018, 45(11): 292-297. https://doi.org/10.11896/j.issn.1002-137X.2018.11.047
[8] 武昱, 闫光辉, 王雅斐, 马青青, 刘宇轩.
结合GPU技术的并行CP张量分解算法
Parallel CP Tensor Decomposition Algorithm Combining with GPU Technology
计算机科学, 2018, 45(11): 298-303. https://doi.org/10.11896/j.issn.1002-137X.2018.11.048
[9] 徐启航,游安清,马社,崔云俊.
基本图像处理算法的优化过程研究
Study on Optimizations of Basic Image Processing Algorithm
计算机科学, 2017, 44(Z6): 169-172. https://doi.org/10.11896/j.issn.1002-137X.2017.6A.039
[10] 沈洪,李晓光.
图像显著估计的并行算法研究
Research on Parallel Algorithm of Image Saliency Estimation
计算机科学, 2017, 44(12): 266-273. https://doi.org/10.11896/j.issn.1002-137X.2017.12.048
[11] 周娟.
基于MITK的医学图像三维表面重建算法
3D-surface Reconstruction Algorithm for Medical Images Based on MITK
计算机科学, 2016, 43(Z6): 194-197. https://doi.org/10.11896/j.issn.1002-137X.2016.6A.046
[12] 韦博文,李涛,李广宇,汪致恒,何沐,师悦龄,刘路遥,张瑞.
使用OpenCL技术的影像快速畸变纠正方法在异构平台上的应用分析
Applied Analysis of Image Accelerating Distortion Correction of OpenCL Technology on Heterogeneous Platform
计算机科学, 2016, 43(Z11): 167-169. https://doi.org/10.11896/j.issn.1002-137X.2016.11A.036
[13] 潘茜,张育平,陈海燕.
基于CUDA的并行K-近邻连接算法实现
Implementation of Parallel K-Nearest Neighbor Join Algorithm Based on CUDA
计算机科学, 2016, 43(10): 190-192. https://doi.org/10.11896/j.issn.1002-137X.2016.10.035
[14] 张杰,柴志雷,喻津.
基于GPU的图像特征并行计算方法
Parallel Computation Method of Image Features Based on GPU
计算机科学, 2015, 42(10): 297-300.
[15] 余莹,李肯立,郑光勇.
一种基于GPU集群的深度优先并行算法设计与实现
Implementation of Depth First Search Parallel Algorithm on Cluster of GPUs
计算机科学, 2015, 42(1): 82-85. https://doi.org/10.11896/j.issn.1002-137X.2015.01.019
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!