计算机科学 ›› 2018, Vol. 45 ›› Issue (6A): 337-341.

• 网络与通信 • 上一篇    下一篇

基于LEO的骨干接入空间信息网络与用频策略研究

刘俊峰1,李飞龙2,杨杰3   

  1. 中南大学信息科学与工程学院 长沙4100171
    中国人民解放军31006部队 北京1000132
    中国人民解放军75841部队 长沙4101263
  • 出版日期:2018-06-20 发布日期:2018-08-03
  • 作者简介:刘俊峰(1990-),男,硕士生,主要研究方向为网络安全与卫星通信,E-mail:294124580@qq.com;李飞龙(1988-),男,博士,主要研究方向为卫星通信技术;杨 杰(1990-),男,硕士,主要研究方向为卫星通信技术。

Researcn on Space Information Network Architecture Based on LEO Satellites for
Backbone Access and Frequency Resolution Strategy

LIU Jun-feng1,LI Fei-long2,YANG Jie3   

  1. School of Information Science and Engineering,Central South University,Changsha 410017,China1
    Unit 31006 of PLA,Beijing 100013,China2
    Unit 75841 of PLA,Changsha 410126,China3
  • Online:2018-06-20 Published:2018-08-03

摘要: 空间信息网络利用各类空间平台来实现空间信息的实时获取、传输和处理,打破了当前多个独立系统之间资源不能共享的壁垒。立足我国空间基础设施种类繁杂、不成体系、缺少统一的通信标准、综合服务能力差、覆盖范围小的建设现状,坚持“既着眼于现有系统,又兼顾未来发展”的建设原则,在空间信息网络建设的初级阶段,设计了基于双层LEO的空间信息网络的体系架构,即将较高轨道的LEO卫星作为骨干核心网来负责骨干传输功能;将较低轨道的LEO卫星作为热点接入层来负责地面和空间业务节点的接入。同时,为未来空间信息业务提供可扩展的体系特征,譬如未来增加对GEO骨干节点的拓扑关系的考虑,从而解决空间信息网络的轨道资源问题。最后,针对空间信息网络频率资源受限的问题,提出了频率获取策略。

关键词: 骨干核心网, 空间信息网络, 频率获取策略, 热点接入网, 星座设计

Abstract: Space information network (SIN) utilizes various spatial platforms to achieve spacial information real-time acquisition,transmission and processing,which breaks the barrier of multiple independent systems incapable sharing resources.Based on the current situation of complex types,fragmentation,lacking of unified communications,poor integrated services and small-coverage for our national space infrastructure,this paper proposed the construction principles of not only focusing on the existing system but also taking into account the future development.A novel SIN architecture based on the double layered LEO was designed during the initial stage of SIN.The higher LEO satellites regarded as the backbone core network play the role of backbone transmission task,while the lower LEO satellites regarded as the hot access network provides access to terrestrial and space services node.Meantime,the scalable system feature is exhibited for future space information service.For example,the topological relations with future increased GEO backbone nodes are considered.Then,orbit resource shortages of SIN is effectively resolved.Additionally,frequency acquisition strategy is researched for the problem of limited frequency resources in SIN at the end of this paper.

Key words: Backbone core network, Constellation design, Frequency resolution strategy, Hot access network, Space information network

中图分类号: 

  • TN927
[1]UCS Satellite Database [OL].Available:http //www ucsusa.org/nuclear_weapons_and_global_security/solutions/space-weapons/ucs-satellite-database.html.
[2]JENNINGS E,HECKMAN D.Performance Characterization of Space Communications and Navigation (SCaN) Network by Simulation[C]∥Proceedings of IEEE Aerospace Conference.2008:1-9.
[3]NASA.Space Communications and Navigation (SCaN) [OL].http://www.nasa.gov/content/space-communication-and-navigation-scan-goals-and-objectives/#.Vp2BILkQh7I.
[4]FOGLIATI V.Basic Pillars for the ISICOM System Develop- ment[C]∥Proceedings of International Workshop on Satellite and Space Communications.2009:99-103.
[5]VANELLI A,CORAZZA G,LUGLIO M,et al.The ISICOM Architecture[C]∥Proceedings of International Workshop on Satellite and Space Communications.2009:104-108.
[6]SESENA J,ALFARO A,MUNOZ S.Regulatory environment for the Successful ISICOM Development[C]∥Proceedings of International Workshop on Satellite and Space Communications.2009:109-112.
[7]FOGLIATI V.ISICOM:Integrated Space Infrastructure for Global COMmunications[C]∥Proceedings of Advanced Satellite Mobile Systems.2008:13-15.
[8]GUPTA O.Global Augmentation of ADS-B Using Iridium NEXT Hosted Payloads[C]∥Proceedings of Integrated Communications,Navigation and Surveillance Conference.2011:1-15.
[9]Discover the Iridium NEXT program [OL].http://www.iridium.com/About/Iiridum NEXT.aspx.
[10]JOHNSTON B,HASLAM M,TRACHTMAN E,et al.SB-SAT Persistent Data Communication LEO Spacecraft via the Inmarsat-4 GEO Constellation[C]∥Proceedings of Advanced Satellite Multimedia Systems Conference.2012:21-28.
[11]ZHANG G,ZHANG W,ZHANG H,et al.A Novel Proposal of Architecture and Network Model for Space Communication Network[C]∥Proceedings of IAF 65th International Astronautical Congress.2014:1-7.
[12]ZHANG W,ZHANG G,GOU L,et al. Hierarchical Autono- mous System Based Topology Control Algorithm in Space Information Network[J].KSII Transactions on Internet and Information Systems,2015,9(9):3572-3593.
[13]ZHANG W,ZHANG G,BIAN D,et al.A Novel Space Information Network Architecture Based on Autonomous System[C]∥Proceedings of Wireless Communications and Signal Processing.2015:1-5.
[14]张威.空间信息网络中的拓扑控制理论与方法研究[D].南京:解放军理工大学,2016.
[15]国家自然科学基金委员会.空间信息网络基础理论与关键技术重大研究计划指南2015 [DB/OL].(2015-04-16)[2017-03-12].http://www.nsfc.gov.cn/publish/portal0/tab38/info48284.htm.
[1] 杨力, 李欣宇, 石怀峰, 潘成胜.
空间信息网络任务智能识别方法
Task Intelligent Identification Method for Spatial Information Network
计算机科学, 2020, 47(4): 262-269. https://doi.org/10.11896/jsjkx.190300111
[2] 杨柳, 王闯, 王俊毅.
一种空间信息网络体系架构的设计
System Design of Space Information Network Architecture
计算机科学, 2019, 46(6A): 309-311.
[3] 蒋炫佑, 魏以民, 王雷, 刘灵君, 彭磊.
逼近高斯信道容量的M-APSK调制与解调方法
M-APSK Signal Modulation and Demodulation Method Approaching Gaussian Channel Capacity
计算机科学, 2019, 46(10): 97-102. https://doi.org/10.11896/jsjkx.180901777
[4] 廖勇,陈鸿宇,沈轩帆.
一种空间信息网络中改进的SCPS-SP
Modified SCPS-SP for Space Information Network
计算机科学, 2017, 44(6): 155-160. https://doi.org/10.11896/j.issn.1002-137X.2017.06.026
[5] 廖勇,樊卓宸,赵明.
空间信息网络安全协议综述
Survey on Security Protocol of Space Information Networks
计算机科学, 2017, 44(4): 202-206. https://doi.org/10.11896/j.issn.1002-137X.2017.04.044
[6] 唐剑,佘春东,徐志明.
LEO/MEO卫星网络动态多径路由协议
Dynamic Multi-path Routing Protocol for LEO/MEO Satellite Networks
计算机科学, 2009, 36(10): 42-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!