计算机科学 ›› 2019, Vol. 46 ›› Issue (6A): 511-517.

• 综合、交叉与应用 • 上一篇    下一篇

考虑软件运行的软-硬件退化系统剩余寿命估计

韩佳佳, 张德平   

  1. 南京航空航天大学计算机科学与技术学院 南京210016
  • 出版日期:2019-06-14 发布日期:2019-07-02
  • 通讯作者: 张德平(1973-),男,博士,主要研究领域为软件测试与软件可靠性建模,E-mail:depingzhang@nuaa.edu.cn(通信作者)。
  • 作者简介:韩佳佳(1990-),女,硕士生,主要研究领域为软件测试与软件可靠性建模,E-mail:932843058@qq.com;
  • 基金资助:
    本文受国防重点项目资金(JCKY2016206B001),国防一般项目(JCKY2014206C002)资助。

Remaining Useful Life Estimation Model for Software-Hardware Deteriorating Systems withSoftware Operational Conditions

HAN Jia-jia, ZHANG De-ping   

  1. College of Computer Science and Technology,Nanjing University of Aeronautics & Astronautics,Nanjing 210016,China
  • Online:2019-06-14 Published:2019-07-02

摘要: 针对软-硬件系统级剩余寿命估计难题,传统的研究方法都是单独考虑了软件可靠性或硬件可靠性,而忽略了软件与硬件之间的交互影响。文中基于硬件性能退化过程提出了一种将软件的使用或运行看作是系统的一种外部冲击的新方法。该方法通过硬件性能退化指标来表征软件运行对系统的影响,主要采用离散隐Markov过程来描述两者之间的关系。具体地,对信号数据采用信号分解与特征提取技术得到性能退化指标,运用隐Markov模型构建隐含状态与实际退化之间的对应关系。根据在不同软件运行条件下系统性能退化指标样本中的拐点个数,对同一硬件退化过程分段构建不同的退化模型,使模型更加精确地描述退化过程。采用随机仿真技术与优化技术对硬件剩余寿命进行估计,根据系统体系结构估计软-硬件系统的剩余寿命。利用某武器装备系统的性能监测数据,将所提算法与传统系统级剩余寿命估计模型(BP神经网络)进行对比,证明了所提算法具有较高的估计精度。

关键词: 软-硬件系统, 剩余寿命估计, 离散隐Markov过程, 退化模型

Abstract: For the estimation problem of theremaining useful life(RUL) of the software-hardware system-level,the traditional research methods consider software reliability or hardware reliability separately,and ignore the interaction effect between them.This paper proposed a new method of considering the use or operation of software as an external impact of the system based on the hardware performance degradation process.This method uses hardware performance degradation indicators to characterize the impact of software operations on the system.Discrete-time hidden Markov processes are mainly used to describe the relationship between them.Specifically,signal degradation and feature extraction techniques are applied to signal data to obtain performance degradation indicators.Hidden Markov models are used to construct the correspondence relation between implied states and actual degradation.According to the number of inflection points in the system performance degradation indicators under different software operating conditions,different degradation models are built on the same hardware degradation process,so that the model describesthe degradation process more accurately.Stochastic simulation technology and optimization technologyare used to estimate,the RUL of the hardware,and according to the system architecture,the RUL of the software-hardware system is estimated .Using the performance monitoring data of a certain weapon equipment system,this paper compared the proposed algorithm with the traditional system-level RUL estimation model (BP neural network),and proved that the proposed algorithm has higher estimation accuracy.

Key words: Software-Hardware system, Remaining useful life estimation, Discrete-time hidden Markov process, Degradation model

中图分类号: 

  • TP311
[1] DU D,HU C,SI X,et al.An improved remaining useful life prediction method for system with volatile degradation path[C]∥Prognostics and System Health Management Conference.IEEE,2017:1-5.
[2] DANGBO D U,CHANGHUA H U,XIAOSHENG S I,et al.Remaining Useful Life Prediction for Hybrid Degradation System[J].Journal of Shanghai Jiaotong University,2017,51(7):886-891.
[3] ZHANG H,CHEN M,ZHOU D.Predicting remaining useful life for a multi-Component system with public noise[C]∥Prognostics and System Health Management Conference.IEEE,2017:1-6.
[4] BAPTISTA M,HENRIQUES E P,DEMEDEIROS I,et al.Remaining Useful Life Estimation in Aeronautics:Combining data-driven and Kalman filtering[J].Reliability Engineering & System Safety,2018,184:228-239.
[5] WANG H K,LI Y F,LIU Y,et al.Remaining useful life estimation under degradation and shock damage[C]∥Proceedings of the Institution of Mechanical Engineers Part O Journal of Risk &Reliability.2017.
[6] ZHANG H,CHEN M,ZHOU D.Remaining useful life prediction for nonlinear degrading systems with maintenance[C]∥Prognostics and System Health Management Conference.2017:1-5.
[7] TENG X,PHAM H,DANIEL R.Reliability modeling of hardware and software interactions,and its application[C]∥IEEE Transaction on Reliability.2006:571-577.
[8] TUMER I,SMIDTS C.Integrated design-stage failure analysis of software-driven hardware systems[C]∥IEEE Transactions on Computers.2010:1072-1084.
[9] GOEL A L,OKUMOTO K.A Markovian model for reliability and other performance measures of software systems[C]∥Proceedings of the National Computer Conference.1979:769-774.
[10] PARZEN E.Stochastic Processes[M].San Francisco,CA:Holden-Day,1962.
[11] HUANG W.Reliability analysis considering product perform-ance degradation[D].Tucson,Arizona:The University of Arizona,2002.
[12] TENG X,PHAM H,JESKE D R.Reliability modeling of hardware and software interactions,and its applications[J].Microcomputer & Its Applications,2011,55(4):571-577.
[13] WELKE S R,JOHNSON B W,AYLOR J H.Reliability mode-ling of hardware/software systems[J].IEEE Trans.Reliability,1995,44(3):413-418.
[14] HECHT HHECHT M.Software reliability in the system context[J].IEEE Transactions on Software Engineering,1986,12(1):51-58.
[15] SANKARARAMAN S,GOEBEL K.Why is the remaining useful life predictionuncertain[C]∥Annual Conference of the Prognostics and Health Management Society.2013:1-13.
[16] SANKARARAMAN S,DAIGLE M J,GOEBEL K.Uncertainty quantification inremaining useful life prediction using first-order reliability methods,Reliability[J].IEEE Transaction on Reliability,2014,63(2):603-619.
[17] JOUIN M,GOURIVEAU R,HISSEL D,et al.Degradations-analysis and aging modeling for health assessment and prognostics of PEMTF[J].Reliability Engineering and System Safety,2016,148:78-95.
[18] ZHANG Q,TSE P W T,WAN X,et al.Remaining usefullife estimation for mechanical systems based on similarity ofphase space trajectory[J].Expert Systems with Applications,2015,42(5):2353-2360.
[19] PARK J,KIM H J,SHIN J H,et al .Anembedded software re-liability model with consideration ofhardware related software failures [C]∥IEEE Sixth InternationalConference on Software Security and Reliability.2012:207-214 .
[20] TOKUNO K,YAMADA S.Codesign-oriented performability-modeling for hardware-software systems [J].IEEE Transactionson Reliability,2011,60(1):171-179 .
[21] PADGETT W J,TOMLINSON M A.Inference from accelerated degradation and failure data based on Gaussian process models[J].Lifetime Data Analysis,2004,10:191-206.
[22] KHAROUFEH J P,COX S M.Stochastic models for degradation-based reliability[J].IIE Transactions,2005,37(6):533-542.
[23] TSENG S T,PENG C Y.Stochastic diffusion modeling of degradation data[J].Journal of Data Science,2007,5(3):315-333.
[24] PARK C,PADGETT W J.Stochastic degradation models with several accelerating variables[J].IEEE Transactions on Reliabi-lity,2006,55(2):379-390.
[25] PARK J,KIM H J,SHIN J H,et al.An Embedded Software Reliability Model with Consideration of Hardware related Software Failures [C]∥IEEE Sixth International Conference on Software Security and Reliability.2012:207-214.
[26] 孟永鹏,贾申利,荣命哲.小波包频带能量分解在断路器机械状态监测中的应用[J].西安交通大学学报,2004(10):1013-1017.
[27] ACADEMIC,YANG Y,DEJIE Y U,CHENG J,et al.Application of Emprical Mode Decomposition (EMD) in Roller Bearing Fault Diagnosis[J].Journal of Hunan University,2003(5):132-138.
[28] DURAND J B,GAUDOIN O.Software Reliability Modelling and Prediction with Hidden Markov Chain[J].Statistical Modelling,2006,5(1):75-93.
[29] 刘河生,高小榕,杨福生.隐马尔可夫模型的原理与实现[J].国际生物医学工程杂志,2002,25(6):253-259.
[30] 奚立峰,黄润青,李兴林,等.基于神经网络的球轴承剩余寿命预测[J].机械工程学报,2007(10):137-143.
[1] 肖宿,韩国强,沃焱. 数字图像超分辨率重建技术综述[J]. 计算机科学, 2009, 36(12): 8-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 雷丽晖,王静. 可能性测度下的LTL模型检测并行化研究[J]. 计算机科学, 2018, 45(4): 71 -75 .
[2] 孙启,金燕,何琨,徐凌轩. 用于求解混合车辆路径问题的混合进化算法[J]. 计算机科学, 2018, 45(4): 76 -82 .
[3] 张佳男,肖鸣宇. 带权混合支配问题的近似算法研究[J]. 计算机科学, 2018, 45(4): 83 -88 .
[4] 伍建辉,黄中祥,李武,吴健辉,彭鑫,张生. 城市道路建设时序决策的鲁棒优化[J]. 计算机科学, 2018, 45(4): 89 -93 .
[5] 史雯隽,武继刚,罗裕春. 针对移动云计算任务迁移的快速高效调度算法[J]. 计算机科学, 2018, 45(4): 94 -99 .
[6] 周燕萍,业巧林. 基于L1-范数距离的最小二乘对支持向量机[J]. 计算机科学, 2018, 45(4): 100 -105 .
[7] 刘博艺,唐湘滟,程杰仁. 基于多生长时期模板匹配的玉米螟识别方法[J]. 计算机科学, 2018, 45(4): 106 -111 .
[8] 耿海军,施新刚,王之梁,尹霞,尹少平. 基于有向无环图的互联网域内节能路由算法[J]. 计算机科学, 2018, 45(4): 112 -116 .
[9] 崔琼,李建华,王宏,南明莉. 基于节点修复的网络化指挥信息系统弹性分析模型[J]. 计算机科学, 2018, 45(4): 117 -121 .
[10] 王振朝,侯欢欢,连蕊. 抑制CMT中乱序程度的路径优化方案[J]. 计算机科学, 2018, 45(4): 122 -125 .