计算机科学 ›› 2018, Vol. 45 ›› Issue (3): 189-195.doi: 10.11896/j.issn.1002-137X.2018.03.030

• 人工智能 • 上一篇    下一篇

一种基于树型贝叶斯网络的集成多标记分类算法

张志东,王志海,刘海洋,孙艳歌   

  1. 北京交通大学计算机与信息技术学院 北京100044,北京交通大学计算机与信息技术学院 北京100044,北京交通大学计算机与信息技术学院 北京100044,北京交通大学计算机与信息技术学院 北京100044
  • 出版日期:2018-03-15 发布日期:2018-11-13
  • 基金资助:
    本文受国家自然科学基金(61672086),北京市自然科学基金(4182052)资助

Ensemble Multi-label Classification Algorithm Based on Tree-Bayesian Network

ZHANG Zhi-dong, WANG Zhi-hai, LIU Hai-yang and SUN Yan-ge   

  • Online:2018-03-15 Published:2018-11-13

摘要: 在多标记分类问题中,有效地利用标记间的依赖关系是进一步提升分类器性能的主要途径之一。基于分类器链算法,利用互信息度量理论构造分类对象的类属性之间明确的多标记关系依赖模型,并依据建立的标记依赖模型将分类器链中的线性依赖拓展成树型依赖,以适应更为复杂的标记依赖关系;同时,在此基础上利用Stacking集成学习方法建立最终训练模型,提出了一种新的针对树型依赖表示模型的Stacking算法。 在多个实验数据集上的实验结果表明,与原有的Stacking集成学习相比,该算法提升了分类器的相应评价指标。

关键词: 多标记分类,标记依赖,Stacking,树型贝叶斯网络

Abstract: The performance of learning algorithm can be improved by utilizing existing label dependencies in multi-label classification.Based on the strategy of classifier chain and stacking ensemble learning,this paper built a model to explain the dependency of different labels,and extended the linear dependency into tree dependency to deal with much more complicated label relations.Compared with the original Stacking algorithm,the performance of the proposed algorithm is improved in the experiments.

Key words: Multilabel classification,Label dependency,Stacking,Tree-Bayesian network

[1] TSOUMAKAS G,KATAKIS I,VLAHAVAS I.Mining Multi-label Data[M]∥Data Mining and Knowledge Discovery Handbook.Boston:Springer,2009:667-685.
[2] ZHANG M L,ZHOU Z H.A review on multi-label learning algorithms[J].IEEE Transactions on Knowledge & Data Engineering,2014,26(8):1819-1837.
[3] UEDA N,SAITO K.Parametric mixture model for multitopictext[J].Systems and Computers in Japan,2006,37(2):56-66.
[4] TSOURAKAKIS C.Provably fast inference of latent featuresfrom networks:with applications to learning social circles and multilabel classification[C]∥Proceedings of the 24th International Conference on World Wide Web.ACM,2015:1111-1121.
[5] LUO Y,LIU T,TAO D,et al.Multiview matrix completion for multilabel image classification[J].IEEE Transactions on Image Processing,2015,24(8):2355-2368.
[6] ZHANG M L,ZHOU Z H.ML-KNN:A lazy learning approach to multi-label learning[J].Pattern Recognition,2007,40(7):2038-2048.
[7] CLARE A,KING R D.Knowledge Discovery in Multi-labelPhenotype Data[J].Lecture Notes in Computer Science,2002,2168(2168):42-53.
[8] ELISSEEFF A E,WESTON J.A Kernel Method for Multi-Labelled Classification[C]∥Advances in Neural Information Processing Systems.2002:681-687.
[9] GHAMRAWI N,MCCALLUM A.Collective multi-label classification[C]∥Proceedings of the 14th ACM International Conference on Information and Knowledge Management.ACM,2005:195-200.
[10] RNKRANZ J,LLERMEIER E,LOZAMENC,et al.Multilabel classification via calibrated label ranking[J].Machine Learning,2008,73(2):133-153.
[11] ALVARES-CHERMAN E,METZ J,MONARD M C.Incorporating label dependency into the binary relevance framework for multi-label classification[J].Expert Systems with Applications,2012,39(2):1647-1655.
[12] TSOUMAKAS G,VLAHAVAS I.Random k-Labelsets:An Ensemble Method for Multilabel Classification[C]∥ European Conference on Machine Learning.Springer,Berlin,Heidelberg,2007:406-417.
[13] READ J,PFAHRINGER B,HOLMES G,et al.Classifier chains for multi-label classification[J].Machine Learning,2011,85(3):254-269.
[14] TSOUMAKAS G,DIMOU A,SPYROMITROS E,et al.Correlation-based pruning of stacked binary relevance models for multi-label learning[C]∥Proceedings of the 1st International Workshop on Learning from Multi-Label Data.2009:101-116.
[15] DEMBCZY'SKI K,CHENG W,HLLERMEIER E.Bayes optimal multilabel classification via Probabilistic Classifier Chains[C]∥International Conference on Machine Learning.2010:279-286.
[16] ZHANG M L,ZHOU Z H.Multilabel neural networks with applications to functional genomics and text categorization[J].IEEE Transactions on Knowledge and Data Engineering,2006,18(10):1338-1351.
[17] CHENG W,HLLERMEIER E.Combining instance-basedlearning and log is ticre gression for multilabel classification[J].Machine Learning,2009,76(2-3):211-225.
[18] ALVARES-CHERMAN E,METZ J,MONARD M C.Incorporating label dependency into the binary relevance framework for multi-label classification[J].Expert Systems with Applications,2012,39(2):1647-1655.
[19] BIELZA C,LI G,LARRAAGA P.Multi-dimensional classification with Bayesian networks[J].International Journal of Approximate Reasoning,2011,52(46):705-727.
[20] FU B,WANG Z,XU G,et al.Multi-label learning based on itera-tive label propagation over graph[J].Pattern Recognition Letters,2014,42(1):85-90.
[21] DE CAMPOS L M.A Scoring Function for Learning Bayesian Networks based on Mutual Information and Conditional Independence Tests[J].Journal of Machine Learning Research,2006,7(7):2149-2187.
[22] FU B,WANG Z H.Multi-Label Classification Method Based on Tree Structure of Label Dependency[J].Pattern Recognition and Artificial Intelligence,2012,25(4):573-580.(in Chinese) 付彬,王志海.基于树型依赖结构的多标记分类算法[J].模式识别与人工智能,2012,25(4):573-580.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 雷丽晖,王静. 可能性测度下的LTL模型检测并行化研究[J]. 计算机科学, 2018, 45(4): 71 -75 .
[2] 孙启,金燕,何琨,徐凌轩. 用于求解混合车辆路径问题的混合进化算法[J]. 计算机科学, 2018, 45(4): 76 -82 .
[3] 张佳男,肖鸣宇. 带权混合支配问题的近似算法研究[J]. 计算机科学, 2018, 45(4): 83 -88 .
[4] 伍建辉,黄中祥,李武,吴健辉,彭鑫,张生. 城市道路建设时序决策的鲁棒优化[J]. 计算机科学, 2018, 45(4): 89 -93 .
[5] 史雯隽,武继刚,罗裕春. 针对移动云计算任务迁移的快速高效调度算法[J]. 计算机科学, 2018, 45(4): 94 -99 .
[6] 周燕萍,业巧林. 基于L1-范数距离的最小二乘对支持向量机[J]. 计算机科学, 2018, 45(4): 100 -105 .
[7] 刘博艺,唐湘滟,程杰仁. 基于多生长时期模板匹配的玉米螟识别方法[J]. 计算机科学, 2018, 45(4): 106 -111 .
[8] 耿海军,施新刚,王之梁,尹霞,尹少平. 基于有向无环图的互联网域内节能路由算法[J]. 计算机科学, 2018, 45(4): 112 -116 .
[9] 崔琼,李建华,王宏,南明莉. 基于节点修复的网络化指挥信息系统弹性分析模型[J]. 计算机科学, 2018, 45(4): 117 -121 .
[10] 王振朝,侯欢欢,连蕊. 抑制CMT中乱序程度的路径优化方案[J]. 计算机科学, 2018, 45(4): 122 -125 .