计算机科学 ›› 2018, Vol. 45 ›› Issue (12): 223-228.doi: 10.11896/j.issn.1002-137X.2018.12.037

• 图形图像与模式识别 • 上一篇    下一篇

基于自适应主动学习与联合双边滤波的高光谱图像分类

李昌利1, 张琳1, 樊棠怀2   

  1. (河海大学计算机与信息学院 南京211100)1
    (南昌工程学院信息工程学院 南昌330099)2
  • 收稿日期:2017-11-22 出版日期:2018-12-15 发布日期:2019-02-25
  • 作者简介:李昌利(1976-),男,博士,副教授,主要研究方向为智能图像处理、盲信号处理、阵列信号处理,E-mail:charlee@hhu.edu.cn(通信作者);张 琳(1988-),女,硕士生,主要研究方向为高光谱图像分类;樊棠怀(1963-),男,教授,主要研究方向为智能图像处理。
  • 基金资助:
    本文受国家自然科学基金项目(61871174,61563036)资助。

Hyperspectral Image Classification Based on Adaptive Active Learning and Joint Bilateral Filtering

LI Chang-li1, ZHANG Lin1, FAN Tang-huai2   

  1. (College of Computer and Information,Hohai University,Nanjing 211100,China)1
    (School of Information Engineering,Nanchang Institute of Technology,Nanchang 330099,China)2
  • Received:2017-11-22 Online:2018-12-15 Published:2019-02-25

摘要: 在高光谱图像分类中,选择合适的样本作为训练样本对分类器进行训练非常重要。将样本的不确定性与代表性相结合,通过自适应主动学习方法来完成样本的选择。用核K均值聚类来获取具有代表性的样本,用最优标号和次优标号的概率差值与两者比值的加权和来度量不确定性。此外,为了提高分类的准确率,利用联合双边滤波来获取高光谱图像的空间信息,并将其融入分类过程中。最后,提出一种融合自适应主动学习与联合双边滤波的空谱结合高光谱图像分类方法,并通过实验验证了所提方法的优越性。

关键词: 高光谱图像分类, 空谱结合, 联合双边滤波, 主动学习

Abstract: It is very important to select appropriate samples as training samples to train the classifier in hyperspectral image classification (HIC).In this paper,the uncertainty and representativeness of the sample are combined,and the sample selection is completed by the adaptive active learning method.The Kernel-K clustering means is used to obtain representative samples,while the uncertainty is determined by the weighted sum of the probability difference between the optimal label and the suboptimal label and their ratio.In addition,in order to improve the accuracy of classification,the joint bilateral filtering is used to obtain the spatial information of hyperspectral image,and it is incorporated into the classification process.Finally,a spatial-spectral HIC approach is proposed,which combines adaptive active learning and joint bilateral filtering.The experimental results show the superiority of the proposed method.

Key words: Active learning, Hyperspectral image classification (HIC), Joint bilateral filtering, Spatial-spectral

中图分类号: 

  • TN911.7
[1]张兵,高连如.高光谱图像分类与目标探测[M].北京:科学出版社,2011.
[2]KANG X D.Study on the extraction and classification of hyper spectral remote sensing images [D].Changsha:Hunan University,2015.(in Chinese)
康旭东.高光谱遥感影像空谱特征提取与分类方法研究[D].长沙:湖南大学,2015.
[3]TONG S,CHANG E.Support vector machine active learning for image retrieval ∥Proceedings of ACM International Confe-rence on Multimedia.New York:ACM,2001:107-118.
[4]MELGANI F,BRUZZONE L.Classification of hyperspectral remote sensing images with support vector machines[J].IEEE Transactions on Geoscience & Remote Sensing,2004,42(8):1778-1790.
[5]SCHÖLKOPF B.The kernel trick for distances ∥Procee- of the 13th International Confe-rence on Neural Information Processing Systems(NIPS’00).Cambridge:MIT Press,2000:283-289.
[6]HUGHES G.On the mean accuracy of statistical pattern recognizers[J].IEEE Transactions on Information Theory,1968,14(1):55-63.
[7]TONG S,KOLLER D.Support vector machine active learning with applications to text classification .The Journal of Machine Learning Research,2002,2(1):45-66.
[8]JOSHI A,PORIKLI F,PAPANIKOLOPOULOS N.Multi-class active learning for image classification ∥Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Miami:IEEE,2009:2372-2379.
[9]TOMASI C,MANDUCHI R.Bilateral filtering for gray and co-lor images ∥Proceedings of the International Conference on Computer Vision.Bombay:IEEE,1998:839-846.
[10]LI J,BIOUCAS-DIAS J,PLAZA A.Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields[J].IEEE Transactions on Geoscience & Remote Sensing,2012,50(3):809-823.
[11]LI J,MARPU P,PLAZA A,et al.Generalized composite kernel framework for hyperspectral image classification[J].IEEE Transactions on Geoscience & Remote Sensing,2013,51(9):4816-4829.
[12]PESARESI M,BENEDIKTSSON J.A new approach for themorphological segmentation of high-resolution satellite imagery[J].IEEE Transactions on Geoscience & Remote Sensing,2001,39(2):309-320.
[13]BENEDIKTSSON J,PALMASON J,SVEINSSON J.Classification of hyperspectral data from urban areas based on extended morphological profiles[J].IEEE Transactions on Geoscience & Remote Sensing,2005,43(3):480-491.
[14]XUE Z,ZHOU S,ZHAO P.Active learning improved by neighborhoods and superpixels for hyperspectral image classification [J].IEEE Geoscience and Remote Sensing Letters,2018,15(3):469-473.
[15]SANTARA A,MANI K,HATWAR P,et al.BASS net:band-adaptive spectral-spatial feature learning neural network for hyperspectral image classification [J].IEEE Transactions on Geoscience and Remote Sensing,2017,55(9):5293-5301.
[1] 周慧, 施皓晨, 屠要峰, 黄圣君.
基于主动采样的深度鲁棒神经网络学习
Robust Deep Neural Network Learning Based on Active Sampling
计算机科学, 2022, 49(7): 164-169. https://doi.org/10.11896/jsjkx.210600044
[2] 侯夏晔, 陈海燕, 张兵, 袁立罡, 贾亦真.
一种基于支持向量机的主动度量学习算法
Active Metric Learning Based on Support Vector Machines
计算机科学, 2022, 49(6A): 113-118. https://doi.org/10.11896/jsjkx.210500034
[3] 张人之, 朱焱.
基于主动学习的社交网络恶意用户检测方法
Malicious User Detection Method for Social Network Based on Active Learning
计算机科学, 2021, 48(6): 332-337. https://doi.org/10.11896/jsjkx.200700151
[4] 王体爽, 李培峰, 朱巧明.
基于数据增强的中文隐式篇章关系识别方法
Chinese Implicit Discourse Relation Recognition Based on Data Augmentation
计算机科学, 2021, 48(10): 85-90. https://doi.org/10.11896/jsjkx.200800115
[5] 董心悦, 范瑞东, 侯臣平.
基于边际概率分布匹配的主动标记分布学习
Active Label Distribution Learning Based on Marginal Probability Distribution Matching
计算机科学, 2020, 47(9): 190-197. https://doi.org/10.11896/jsjkx.200700077
[6] 王燕, 王丽.
面向高光谱图像分类的局部Gabor卷积神经网络
Local Gabor Convolutional Neural Network for Hyperspectral Image Classification
计算机科学, 2020, 47(6): 151-156. https://doi.org/10.11896/jsjkx.190500147
[7] 李翼宏, 刘方正, 杜镇宇.
一种改进主动学习的恶意代码检测算法
Malware Detection Algorithm for Improving Active Learning
计算机科学, 2019, 46(5): 92-99. https://doi.org/10.11896/j.issn.1002-137X.2019.05.014
[8] 赵海燕, 汪静, 陈庆奎, 曹健.
主动学习在推荐系统中的应用
Application of Active Learning in Recommendation System
计算机科学, 2019, 46(11A): 153-158.
[9] 孙金, 陈若煜, 罗恒利.
基于主动学习的人脸标注研究
Research on Face Tagging Based on Active Learning
计算机科学, 2018, 45(9): 299-302. https://doi.org/10.11896/j.issn.1002-137X.2018.09.050
[10] 吕巨建, 赵慧民, 陈荣军, 李键红.
基于自适应稀疏邻域重构的无监督主动学习算法
Unsupervised Active Learning Based on Adaptive Sparse Neighbors Reconstruction
计算机科学, 2018, 45(6): 251-258. https://doi.org/10.11896/j.issn.1002-137X.2018.06.045
[11] 魏明强,冯一箪,王伟明,谢浩然,王富利.
基于区间梯度的联合双边滤波图像纹理去除方法
Interval Gradient Based Joint Bilateral Filtering for Image Texture Removal
计算机科学, 2018, 45(3): 29-34. https://doi.org/10.11896/j.issn.1002-137X.2018.03.005
[12] 李锋,万小强.
基于关联矩阵的短信自动分类
SMS Automatic Classification Based on Relational Matrix
计算机科学, 2017, 44(Z6): 428-432. https://doi.org/10.11896/j.issn.1002-137X.2017.6A.096
[13] 王长宝,李青雯,于化龙.
面向类别不平衡数据的主动在线加权极限学习机算法
Active,Online and Weighted Extreme Learning Machine Algorithm for Class Imbalance Data
计算机科学, 2017, 44(12): 221-226. https://doi.org/10.11896/j.issn.1002-137X.2017.12.040
[14] 翟俊海,臧立光,张素芳.
在线序列主动学习方法
Online Sequential Active Learning Approach
计算机科学, 2017, 44(1): 37-41. https://doi.org/10.11896/j.issn.1002-137X.2017.01.007
[15] 梁喜涛,顾磊.
基于最近邻的主动学习分词方法
Active Learning in Chinese Word Segmentation Based on Nearest Neighbor
计算机科学, 2015, 42(6): 228-232. https://doi.org/10.11896/j.issn.1002-137X.2015.06.048
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!