计算机科学 ›› 2018, Vol. 45 ›› Issue (2): 276-279.doi: 10.11896/j.issn.1002-137X.2018.02.047

• 人工智能 • 上一篇    下一篇

基于标签和PageRank的重要微博用户推荐算法

王嵘冰,安维凯,冯勇,徐红艳   

  1. 辽宁大学信息学院 沈阳110036,辽宁大学信息学院 沈阳110036,辽宁大学信息学院 沈阳110036,辽宁大学信息学院 沈阳110036
  • 出版日期:2018-02-15 发布日期:2018-11-13
  • 基金资助:
    本文受辽宁省博士科研启动基金(201601099),辽宁省档案科技项目(L-2016-8-7)资助

Important Micro-blog User Recommendation Algorithm Based on Label and PageRank

WANG Rong-bing, AN Wei-kai, FENG Yong and XU Hong-yan   

  • Online:2018-02-15 Published:2018-11-13

摘要: 海量的微博信息使新进用户很难获取到其感兴趣的内容,重要微博用户推荐为新用户提供了一条有效获取信息的途径。目前,由于 用户间的关系没有被充分考虑及缺乏对用户个性化标签的处理,导致重要微博用户推荐的准确率不高。为此,提出了一种基于标签和PageRank的重要微博用户推荐算法。该算法首先对个性化标签进行分词、去噪、设置权重等处理,并将其作为用户兴趣的代表;然后根据PageRank计算模型来分析用户间的关系,结合标签相似度计算向新用户推荐与其兴趣相似的重要微博用户。 实验表明,该算法由于融入了对微博用户关系和用户个性化标签的重要性分析,因此与基于标签和协同过滤的个性化推荐算法相比 具有更高的重要微博用户推荐准确率。

关键词: 个性化推荐,PageRank,标签,微博

Abstract: Massive micro-blog information makes it difficult for new users to obtain the content they are interested in.Important micro-blog user recommendation provides an effective way for new users to access information.At present,inadequate consideration of the relationship between users and the lack of user personalized label processing make the recommendation accuracy of important micro-blog user be not high.Therefore, an important micro-blog user recommendation algorithm based on label and PageRank was proposed.Firstly,the personalized label is processed by word segmentation,de-noising and setting weight,and the processed result is used as the representative of user interest.Se-condly,the relationship between users is analyzed by PageRank calculation model.Finally,important micro-blog users are recommended to new users with similar interests by label similarity calculation.The experiment shows that the proposed algorithm improves the recommendation accuracy of important micro-blog users compared with the recommendation algorithm based on label and collaborative filtering,because the analysis of the importance of micro-blog user relationship and user’s personalized label is integrated into this algorithm.

Key words: Personalized recommendation,PageRank,Label,Micro-blog

[1] ZHANG R,JIN Z G,WANG Y.Recommendation Model of Microblog User Tags Based on Hybrid Grain[J].Computer Scien-ce,2016,43(4):192-196.(in Chinese) 张瑞,金志刚,王颖.一种基于混合粒度的微博用户标签推荐模型[J].计算机科学,2016,43(4):192-196.
[2] WEI S,ZHENG X,CHEN D,et al.A Hybrid Approach forMovie Recommendation via Tags and Ratings[J].Electronic Commerce Research & Applications,2016,18(C):83-94.
[3] YANG A T,TANG Y,WANG J B,et al.Personalized Friends Recommendation System Based on Game Theory in Social Network[J].Computer Science,2015,42(9):191-194.(in Chinese) 杨阿祧,汤庸,王江斌,等.基于博弈的社会网络个性化好友推荐算法研究[J].计算机科学,2015,42(9):191-194.
[4] XING Q L,LIU L,LIU Y Q,et al.Study on User Tags in Weibo[J].Journal of Software,2015,26(7):1626-1637.(in Chinese) 邢千里,刘列,刘奕群,等.微博中用户标签的研究[J].软件学报,2015,26(7):1626-1637.
[5] LI R M,LIN H F,YAN J.Mining Latent Semantic on User-Tag-Item for Personalized Music Recommendation[J].Journal of Computer Research and Development,2014,51(10):2270-2276.(in Chinese) 李瑞敏,林鸿飞,闫俊.基于用户-标签-项目语义挖掘的个性化音乐推荐[J].计算机研究与发展,2014,51(10):2270-2276.
[6] CAI Q,HAN D M,LI H S,et al.Personalized Resource Recommendation Based on Tags and Collaborative Filtering[J].Computer Science,2014,41(1):69-71.(in Chinese) 蔡强,韩东梅,李海生,等.基于标签和协同过滤的个性化资源推荐[J].计算机科学,2014,41(1):69-71.
[7] WANG X Y,REN G S.Improved PageRank Algorithm Based on User Behavior and PageAnalysis[J].Computer Engineering,2016,42(2):164-168.(in Chinese) 王旭阳,任国盛.基于用户行为与页面分析的改进PageRank算法[J].计算机工程,2016,42(2):164-168.
[8] REN X Y,SONG M N,SONG J D.Context-Aware Point-of-Interest Recommendation in Location-Based Social Networks[J].Chinese Journal of Computers,2017,40(4):824-841.(in Chinese) 任星怡,宋美娜,宋俊德.基于位置社交网络的上下文感知的兴趣点推荐[J].计算机学报,2017,40(4):824-841.
[9] LIANG T T,LI C Q,LI H S.Top-k Learning Resource Matching Recommendation Based on Content Filtering PageRank[J].Computer Engineering,2017,43(2):220-226.(in Chinese) 梁婷婷,李春青,李海生.基于内容过滤PageRank的Top-k学习资源匹配推荐[J].计算机工程,2017,43(2):220-226.
[10] OLVERA E P,GODOY D.Evaluating Term Weighting Schemesfor Content-based Tag Recommendation in Social Tagging Systems[J].IEEE Latin America Transaction,2012,0(4):1973-1980.
[11] LIU J,ZHANG K,CHEN X.Personalized Recommendation Algorithm Based on Tags and Collaborative Filtering[J].Compu-ter & Modernization,2016(2):62-65.(in Chinese) 刘健,张琨,陈旋.基于标签和协同过滤的个性化推荐算法[J].计算机与现代化,2016(2):62-65.
[12] SONG Y,ZHANG L,GILES C L.Automatic Tag Recommendation Algorithms for Social Recommender Systems[J].ACM Transactions on the Web,2011,5(1):4.
[13] DU W H,RAN J W,HUANG J W,et al.Improving the Quality of Tags Using State Transition on Progressive Image Search and Recommendation System[C]∥IEEE International Confe-rence on Systems,Man,and Cybernetics.IEEE,2012:3233-3238.
[14] JIANG S,WANG Z Q,XIU Y,et al.Collaborative FilteringRecommendation Method Based on Dynamic Social Behavior and Users’ Background Information[J].Computer Science,2015,42(3):252-255.(in Chinese) 蒋胜,王忠群,修宇,等.基于动态社会行为和用户背景的协同推荐方法[J].计算机科学,2015,42(3):252-255.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!