计算机科学 ›› 2018, Vol. 45 ›› Issue (2): 276-279.doi: 10.11896/j.issn.1002-137X.2018.02.047
王嵘冰,安维凯,冯勇,徐红艳
WANG Rong-bing, AN Wei-kai, FENG Yong and XU Hong-yan
摘要: 海量的微博信息使新进用户很难获取到其感兴趣的内容,重要微博用户推荐为新用户提供了一条有效获取信息的途径。目前,由于 用户间的关系没有被充分考虑及缺乏对用户个性化标签的处理,导致重要微博用户推荐的准确率不高。为此,提出了一种基于标签和PageRank的重要微博用户推荐算法。该算法首先对个性化标签进行分词、去噪、设置权重等处理,并将其作为用户兴趣的代表;然后根据PageRank计算模型来分析用户间的关系,结合标签相似度计算向新用户推荐与其兴趣相似的重要微博用户。 实验表明,该算法由于融入了对微博用户关系和用户个性化标签的重要性分析,因此与基于标签和协同过滤的个性化推荐算法相比 具有更高的重要微博用户推荐准确率。
[1] ZHANG R,JIN Z G,WANG Y.Recommendation Model of Microblog User Tags Based on Hybrid Grain[J].Computer Scien-ce,2016,43(4):192-196.(in Chinese) 张瑞,金志刚,王颖.一种基于混合粒度的微博用户标签推荐模型[J].计算机科学,2016,43(4):192-196. [2] WEI S,ZHENG X,CHEN D,et al.A Hybrid Approach forMovie Recommendation via Tags and Ratings[J].Electronic Commerce Research & Applications,2016,18(C):83-94. [3] YANG A T,TANG Y,WANG J B,et al.Personalized Friends Recommendation System Based on Game Theory in Social Network[J].Computer Science,2015,42(9):191-194.(in Chinese) 杨阿祧,汤庸,王江斌,等.基于博弈的社会网络个性化好友推荐算法研究[J].计算机科学,2015,42(9):191-194. [4] XING Q L,LIU L,LIU Y Q,et al.Study on User Tags in Weibo[J].Journal of Software,2015,26(7):1626-1637.(in Chinese) 邢千里,刘列,刘奕群,等.微博中用户标签的研究[J].软件学报,2015,26(7):1626-1637. [5] LI R M,LIN H F,YAN J.Mining Latent Semantic on User-Tag-Item for Personalized Music Recommendation[J].Journal of Computer Research and Development,2014,51(10):2270-2276.(in Chinese) 李瑞敏,林鸿飞,闫俊.基于用户-标签-项目语义挖掘的个性化音乐推荐[J].计算机研究与发展,2014,51(10):2270-2276. [6] CAI Q,HAN D M,LI H S,et al.Personalized Resource Recommendation Based on Tags and Collaborative Filtering[J].Computer Science,2014,41(1):69-71.(in Chinese) 蔡强,韩东梅,李海生,等.基于标签和协同过滤的个性化资源推荐[J].计算机科学,2014,41(1):69-71. [7] WANG X Y,REN G S.Improved PageRank Algorithm Based on User Behavior and PageAnalysis[J].Computer Engineering,2016,42(2):164-168.(in Chinese) 王旭阳,任国盛.基于用户行为与页面分析的改进PageRank算法[J].计算机工程,2016,42(2):164-168. [8] REN X Y,SONG M N,SONG J D.Context-Aware Point-of-Interest Recommendation in Location-Based Social Networks[J].Chinese Journal of Computers,2017,40(4):824-841.(in Chinese) 任星怡,宋美娜,宋俊德.基于位置社交网络的上下文感知的兴趣点推荐[J].计算机学报,2017,40(4):824-841. [9] LIANG T T,LI C Q,LI H S.Top-k Learning Resource Matching Recommendation Based on Content Filtering PageRank[J].Computer Engineering,2017,43(2):220-226.(in Chinese) 梁婷婷,李春青,李海生.基于内容过滤PageRank的Top-k学习资源匹配推荐[J].计算机工程,2017,43(2):220-226. [10] OLVERA E P,GODOY D.Evaluating Term Weighting Schemesfor Content-based Tag Recommendation in Social Tagging Systems[J].IEEE Latin America Transaction,2012,0(4):1973-1980. [11] LIU J,ZHANG K,CHEN X.Personalized Recommendation Algorithm Based on Tags and Collaborative Filtering[J].Compu-ter & Modernization,2016(2):62-65.(in Chinese) 刘健,张琨,陈旋.基于标签和协同过滤的个性化推荐算法[J].计算机与现代化,2016(2):62-65. [12] SONG Y,ZHANG L,GILES C L.Automatic Tag Recommendation Algorithms for Social Recommender Systems[J].ACM Transactions on the Web,2011,5(1):4. [13] DU W H,RAN J W,HUANG J W,et al.Improving the Quality of Tags Using State Transition on Progressive Image Search and Recommendation System[C]∥IEEE International Confe-rence on Systems,Man,and Cybernetics.IEEE,2012:3233-3238. [14] JIANG S,WANG Z Q,XIU Y,et al.Collaborative FilteringRecommendation Method Based on Dynamic Social Behavior and Users’ Background Information[J].Computer Science,2015,42(3):252-255.(in Chinese) 蒋胜,王忠群,修宇,等.基于动态社会行为和用户背景的协同推荐方法[J].计算机科学,2015,42(3):252-255. |
No related articles found! |
|