计算机科学 ›› 2018, Vol. 45 ›› Issue (1): 90-96.doi: 10.11896/j.issn.1002-137X.2018.01.014

• CRSSC-CWI-CGrC-3WD 2017 • 上一篇    下一篇

基于协同过滤的三支粒推荐算法研究

叶晓庆,刘盾,梁德翠   

  1. 西南交通大学经济管理学院 成都610031,西南交通大学经济管理学院 成都610031,电子科技大学经济与管理学院 成都610054
  • 出版日期:2018-01-15 发布日期:2018-11-13
  • 基金资助:
    本文受国家自然科学基金项目(71571148,6,71201133),四川省科技厅应用基础面上项目(2017JY0220),四川省电子商务与现代物流研究中心项目(DSWL16-2),四川省留学回国人员科技活动择优资助

Three-way Granular Recommendation Algorithm Based on Collaborative Filtering

YE Xiao-qing, LIU Dun and LIANG De-cui   

  • Online:2018-01-15 Published:2018-11-13

摘要: 为了降低传统协同过滤算法的推荐成本,并解决该算法评分信息单一的问题,提出了一种基于协同过滤的三支粒推荐算法。该算法在传统协同过滤的基础上,考虑项目特征对用户评分的影响,根据项目特征、粒化用户项目评分矩阵,形成用户对项目粒度的评分矩阵,并以此作为用户偏好的测度依据。同时,该算法在推荐过程中引入三支决策,考虑了推荐过程中产生的误分类成本和学习成本,并基于用户真实的评分偏好构建三支推荐。实验结果显示,基于协同过滤的三支粒推荐算法与传统协同过滤算法相比,不但提高了算法的推荐质量,而且降低了推荐成本。

关键词: 协同过滤,三支决策,粒计算,三支粒推荐

Abstract: To decrease the recommendation cost and solve the problem of single rating of traditional collaborative filtering algorithm,this paper proposed a three-way granular recommendation algorithm based on collaborative filtering.On the basis of collaborative filtering,this algorithm considers the influence of items’ characteristics on users’ ratings,and constructs user-item’s granulation rating matrix through granulating user-item rating matrix by the characteristics of items,which is used to measure users’ preferences.At the same time,this algorithm considers both misclassification cost and teacher cost during the process of recommendation,and constructs three-way recommendation based on users’ real preferences on rating.Experimental results show that compared with traditional collaborative filtering algorithm,three-way granular recommendation algorithm based on collaborative filtering not only improves the quality of the re-commendation,but also decreases the recommendation cost.

Key words: Collaborative filtering,Three-way decision,Granular computing,three-way granular recommendation

[1] ZHAO L,HU N J,ZHANG S Z.Algorithm design for persona-lization recommendation systems[J].Journal of Computer Research & Development,2002,39(8):986-991.
[2] DENG A L,ZHU Y Y,SHI B L.A collaborative filtering re-commendation algorithm based on Item rating prediction[J].Journal of Software,2003,14(9):54-65.
[3] DESHPANDE M,KARYPIS G.Item-based top-N recommenda-tion algorithms[J].ACM Transactions on Information Systems,2003,22(1):143-177.
[4] FENG Z J,XIAN T,FENG G J.An optimized collaborative filtering recommendation algorithm[J].Journal of Computer Research & Development,2004,41(10):1842-1847.
[5] WANG G X,LIU H P.Survey of personalized recommendation system[J].Computer Engineering and Application,2012,48(7):66-76.(in Chinese) 王国霞,刘贺平.个性化推荐系统综述[J].计算机工程与应用,2012,8(7):66-76.
[6] SHU X H.Research of sparsity and cold start problem in collaborative filtering[D].Hangzhou:Zhejiang University,2005.(in Chinese) 孙小华.协同过滤系统的稀疏性与冷启动问题研究[D].杭州:浙江大学,2005.
[7] ZHANG H R,MIN F.Three-way recommender systems based on random forests[J].Knowledge-Based Systems,2015,91:275-286.
[8] PAWLAK Z.Rough sets[J].International Journal of Computer and Information Science,1982,11(5):341-356.
[9] ZHANG B,ZHANG L.Theory and applications of problem solving [M].North-Holland:Elsevier Science Publishers,1992.
[10] ZADEH L A.Fuzzy Logic=Computing with words [M]∥Computing with words in Information/Intelligent Systems 1.Physica-Verlag HD,1999:103-111.
[11] YAO Y Y.Granular computing:past,present,and future[C]∥International Conference on Rough Sets and Knowledge Technology.Springer-Verlag,2008:27-28.
[12] YAO Y Y.Granular Computing and sequential three-way decisions[C]∥International Conference on Rough Sets and Know-ledge Technology.Springer Berlin Heidelberg,2013:16-27.
[13] BU D B,BAI S,LI G J.Principle of Granualarity in Clustering and Classification[J].Chinese Journal of Computers,2002,25(8):810-816.(in Chinese) 卜东波,白硕,李国杰.聚类/分类中的粒度原理[J].计算机学报,2002,5(8):810-816.
[14] WEI L,MIAO D.Application of granular computing in know-ledge reduction[C]∥International Conference on Rough Sets and Knowledge Technology.Springer-Verlag,2006:357-362.
[15] WU W Z,LEUNG Y,MI J S.Granular computing and know-ledge reduction in formal contexts[J].IEEE Transactions on Knowledge & Data Engineering,2008,21(10):1461-1474.
[16] WANG G Y,ZHANG Q H,HU J.An overview of granularcomputing[J].CAAI Transactions on Intelligent Systems,2007,2(6):8-26.(in Chinese) 王国胤,张清华,胡军.粒计算研究综述[J].智能系统学报,2007,2(6):8-26.
[17] YAO Y Y.Probabilistic rough set approximations [J].International Journal of Approximate Reasoning,2008,49(2):255-271.
[18] LIU D,LI T R,DA R.Probabilistic model criteria with decision-theoretic rough sets [J].Information Sciences,2011,181(17):3709-3722.
[19] YAO Y Y.Three-way decisions with probabilistic rough sets[J].Information Sciences,2010,0(3):341-353.
[20] LIU D,YAO Y Y,LI T R.Three-way Decision-theoretic RoughSets[J].Computer Science,2011,8(1):246-250.(in Chinese) 刘盾,姚一豫,李天瑞.三枝决策粗糙集[J].计算机科学,2011,8(1):246-250.
[21] ZHOU B,YAO Y Y,LUO J G.Cost-sensitive three-way email spam filtering[J].Journal of Intelligent Information Systems,2014,42:19-45.
[22] LIU D,LI T R,LIANG D C.Three-way government decision analysis with decision-theoretic rough sets[J].International Journal of Uncertainty Fuzziness and Knowledge-Based Systems,2012,20:119-132.
[23] YU H,ZHANG C,WANG G.A tree-based incremental overlapping clustering method using the three-way decision theory[J].Knowledge-Based Systems,2015,91:189-203.
[24] ZHANG H R,MIN F,SHI B.Regression-based three-way re-commendation [M].Elsevier Science Inc,2017.
[25] SARWAR B,KARYPIS G,et al.Analysis of recommendationalgorithms for e-commerce [C]∥ ACM Conference on Electronic Commerce.ACM,2000:158-167.
[26] SARWAR B,KARYPIS G,KONSTON J,et al.Item-based collaborative filtering recommendation algorithms[C]∥International Conference on World Wide Web.ACM,2001:285-295.
[27] LIU J G,ZHOU T,GUO Q,et al(1)Overview of the Evaluated Algorithms for the Personal Recommendation Systems[J].Complex Systems and Complexity Sciences,2009,6(3):1-10.(in Chinese) 刘建国,周涛,郭强,等.个性化推荐系统评价方法综述[J].复杂系统与复杂性科学,2009,6(3):1-10.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!