计算机科学 ›› 2014, Vol. 41 ›› Issue (Z6): 132-134.

• 模式识别与图像处理 • 上一篇    下一篇

采用改进高斯核的MLS-SVM人脸表情识别算法

卢照敢,许春梅,孙楠,苗许娜   

  1. 河南财经政法大学计算机与信息工程学院 郑州450002;西安电子科技大学电子工程学院 西安710071;河南理工大学计算机科学与技术学院 焦作454000;河南财经政法大学计算机与信息工程学院 郑州450002;河南财经政法大学计算机与信息工程学院 郑州450002
  • 出版日期:2018-11-14 发布日期:2018-11-14
  • 基金资助:
    本文受国家青年科学基金项目(61309033)资助

Improved Face Emotion Identification Algorithm by MLS-SVM with Modified Gauss Kernel Function

LU Zhao-gan,XU Chun-mei,SUN Nan and MIAO Xu-na   

  • Online:2018-11-14 Published:2018-11-14

摘要: 针对用于支持向量机的低维输入数据空间向高维特征空间的映射,通过黎曼测度张量扩大了支持向量机的线性可分边界,进一步提高了支持向量机分类的准确性。考虑到MLS-SVM的多分辨逼近效果和改进高斯核函数对支持向量机分类准确度的提升,企图努力给出一种基于两者优点的人脸表情识别算法,以反映人类在自然界中的认知过程,提出了采用改进高斯核的MLS-SVM人脸表情识别算法。实验结果表明,其人脸表情识别性能通过修改高斯核函数获得了较大的提升。

关键词: 支持向量机,人脸表情识别,高斯核,最小二乘算法 中图法分类号TP391.4文献标识码A

Abstract: Aiming at the map of the low dimension data space for support vector machines (SVM) to high dimension feature space,the Riemann measure tensor was used to extend the SVM linear disjunctive borders,and the SVM classification accuracy was improved.In fact,the good multiple resolution approximation accuracy of MLS-LSM has the similar process to that of the face emotion identification of human eyes.Therefore,one face emotion identification algorithm with the improved MLS-SVM by Guass kernel function was proposed in this paper,which could improve the face emotion identification accurate.At last,the numerical evaluation results show that the accurate of face emotion identification is improved with the comparison to two classification approaches.

Key words: Support vector machine,Face emotion identification,Gauss kernel function,Least square algorithm

[1] 胡步发,陈炳兴,黄银成.基于表情子空间多分类器集成的非特定人人脸表情识别[J].计算机应用,2011,1(3):736-740
[2] 蒋斌,贾克斌,杨国胜.人脸表情识别的研究进展[J].计算机科学,2011,8(4):25-31
[3] 汪烈军.基于支持向量机的图像信号处理技术研究[D].西安:西安交通大学,2012
[4] Fasel B,Luettin J.Automatic facial expression analysis:a survey[J].Pattern Recognition,2003,36(1):259-275
[5] Ekman P,Friesen W V.Constants across cultures in the face and emotion[J].Journal of Personality and Social Psychology,1971,17(2):124-129
[6] 洪伟铭.组合方法在人脸表情识别中的应用研究[J].计算机仿真,2011,8(2):337-340
[7] 郑秋梅,吕兴会,时公喜.基于多特征集成分类器的人脸表情识别[J].中国石油大学学报:自然科学版,2011,35(1):174-177
[8] Suwa M,Sugie N,Fujimora K.A preliminary note on patternrecognition of human emotional expression[C]∥Proc of the 4th Int Joint Conference on Pattern Recognition (IJCPR).Kyoto,Japan,1978:408-410
[9] Mase K,Pentland A.Recognition of facial expression from optical flow [J].IEICE Trans,1991,E74(10):3474-3483
[10] Turk M A,Pentland A P.Face recognition using eigenfaces[C]∥Proc.IEEE Conf.on Computer Vision and Pattern Recognition.1991:586-591
[11] Belhumeur P N,Hespanha J P,Kriegman D J.Eigenfaces vs.fisherfaces:recognition using class specific linear projection[J].IEEE Trans.Pattern Analysis and Machine Intelligence,1997,19(7):711-720
[12] Ying Zi-lu,Li Jing-wen,Zhang You-wei.Facial expression recognition based on classifier Combinations[C]∥Proceedings of 8th IEEE Int.Conf.Signal Processing (ICSP).Guilin,China,2006:367-372
[13] Otsuka T,Ohya J.Spotting segments displaying facial expres-sion from image sequences using HMM[C]∥IEEE Proc of the 2th Int.Conf.on Automatic Face and Gesture Recognition.Nara,Japan,1998:442-447
[14] Lyons M J,Akamatsu S,Kamachi M,et al.Coding facial expressions with Gabor wavelets[C]∥IEEE Proc of the 2th Int.Conf.on Automatic Face and Gesture Recognition.Nara,Japan,1998:200-205
[15] 叶吉祥,胡秀明.基于Gabor小波与分形维的人脸表情特征提取[J].计算机工程,2008,34(4):226-230
[16] 董玉龙,姜威.基于提升小波和FLD的人脸表情识别[J].光学技术,2012,38(5):579-582
[17] Amari S.Improving support vector machine classifiers by modifying kernel functions[J].Neural Networks,1999,12:783-792
[18] Marc A,Michel B.Image coding using wavelet transform [J].IEEE Transactions on Image Processing,1992,1(2):205-220

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!