计算机科学 ›› 2016, Vol. 43 ›› Issue (Z6): 207-209.doi: 10.11896/j.issn.1002-137X.2016.6A.049

• 模式识别与图像处理 • 上一篇    下一篇

基于稀疏表达和机器学习的行人检测技术研究

王坚,兰天   

  1. 中央财经大学信息学院 北京100081,中央财经大学信息学院 北京100081
  • 出版日期:2018-12-01 发布日期:2018-12-01
  • 基金资助:
    本文受中央财经大学重点学科建设项目资助

Study on Pedestrian Detection Based on Sparse Representation and Machine Learning

WANG Jian and LAN Tian   

  • Online:2018-12-01 Published:2018-12-01

摘要: 针对行人检测技术在智能交通系统中的应用,为了提高行人检测方法的有效性、实时性和准确性,将稀疏表达应用到图像的特征压缩中,提出一种基于HOG和LTP特征训练SVM分类器进行行人检测的方法。基于HOG和LTP特征训练SVM分类器进行行人检测的方法有效地结合了图像的梯度特征和纹理特征,利用稀疏表达进行特征数据的压缩可以有效地加速算法。实验结果表明,提出的算法具有精度高、速度快等优点。

关键词: 稀疏表达,行人检测,LTP,HOG,SVM,图像处理

Abstract: According to the application of pedestrian detection technology in the intelligent transportation system,in order to improve the efficiency,real-time and accuracy of pedestrian detection method,in this paper,the sparse representation was applied to the feature compression of the image,and a new method of pedestrian detection based on HOG and LTP feature training SVM classifier was proposed.Training SVM classifier for pedestrian detection based on the cha-racteristics of HOG and LTP effectively combines the image gradient feature and texture features and takes advantage of the sparse expression on data compression which can effectively speed up the algorithm.Experimental results show that the proposed algorithm has the advantages of high precision and speed.

Key words: Sparse representation,Pedestrian detection,LTP,HOG,SVM ,Image processing

[1] Zhou T,Tao D.Randomized low-rank & sparse matrix decomposition in noisy case[C]∥International Conference on Machine Learning.2011,3:2
[2] Zhang K,Zhang L,Yang M H.Real-time compressive tracking[M]∥Computer Vision-ECCV 2012.Springer Berlin Heidelberg,2012:864-877
[3] Beleznai C,Schreiber D,Rauter M.Pedestrian detection usingGPU-accelerated multiple cue computation[C]∥2011 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).IEEE,2011:58-65
[4] Yan J,Lei Z,Yi D,et al.Multi-pedestrian detection in crowded scenes:A global view[C]∥2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).IEEE,2012:3124-3129
[5] 苏松志,李绍滋,陈淑媛,等.行人检测技术综述[J].电子学报,2012,40(4):814-820
[6] Li Y,Lu W,Wang S,et al.Local Haar-like features in edge maps for pedestrian detection[C]∥2011 4th International Congress on Image and Signal Processing (CISP).IEEE,2011,3:1424-1427
[7] Baltieri D,Vezzani R,Cucchiara R.People orientation recognition by mixtures of wrapped distributions on random trees[M]∥Computer Vision-ECCV 2012.Springer Berlin Heidelberg,2012:270-283
[8] Ouyang W,Wang X.A discriminative deep model for pedestrian detection with occlusion handling[C]∥2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).IEEE,2012:3258-3265

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!