计算机科学 ›› 2016, Vol. 43 ›› Issue (Z6): 77-80.doi: 10.11896/j.issn.1002-137X.2016.6A.017

• 智能计算 • 上一篇    下一篇

基于探测粒子群的小波核极限学习机算法

陈晓青,陆慧娟,关伟,郑文斌   

  1. 中国计量学院信息工程学院 杭州310018,中国计量学院信息工程学院 杭州310018,中国计量学院现代科技学院 杭州310018,中国计量学院信息工程学院 杭州310018
  • 出版日期:2018-12-01 发布日期:2018-12-01
  • 基金资助:
    本文受国家自然科学基金资助

Wavelet Kernel Extreme Learning Machine Algorithm Based on Detecting Particle Swarm Optimization

CHEN Xiao-qing, LU Hui-juan, GUAN Wei and ZHENG Wen-bin   

  • Online:2018-12-01 Published:2018-12-01

摘要: 在分析核极限学习机原理的基础上,将小波函数作为核函数运用于极限学习机中,形成小波核极限学习机(WKELM)。实验表明,该算法提高了分类性能,增加了鲁棒性。在此基础上利用探测粒子群(Detecting Particle Swarm Optimization,DPSO)对WKELM参数优化,最终得到分类效果较优的DPSO-WKELM分类器。通过采用UCI基因数据进行仿真,将该分类结果与径向基核极限学习机(KELM)、WKELM等算法结果进行比较,得出所提算法具有较高的分类精度。

关键词: 核极限学习机,探测粒子群,算法优化,分类精度

Abstract: In this paper,the principle of the kernel extreme machine was studied.Wavelet function was chosen to be the extreme learning machine’s kernel function.Experiments show that this algorithm improves the classification accuracy and increases the robustness.Based on this method,we used detecting particle swarm optimization(DPSO) to optimize and set the initial parameters of WKELM in order to obtain the optimal WKELM classifier DPSO-WKELM.We used UCI gene data for simulation.The classification results are compared with the results of radial basis kernel extreme learning machine (KELM) and WKELM.The comparison shows that the proposed algorithm has higher classification accuracy.

Key words: KELM,DPSO,Algorithm optimization,Classification accuracy

[1] He Zhi-bin,Wen Xiao-hu,Liu Hu,et al.A comparative study of artificial neural network,adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region[J].Journal of Hydrology,2014,509(13):379-386
[2] 陆慧娟,安春霖,马小平,等.基于输出不一致测度的极限学习机集成的基因表达数据分类[J].计算机学报,2013,36(2):341-348
[3] Huang G.B,Chen L,Siew C K.Enhanced random search based incremental extreme learning machine[J].Neurocomputing,2008,71(18):3460-3468
[4] Deng W Y,Chen L.Regularized extreme learning machine inData mining[J].Proc IEEE Symp Comput Intell,2009,10(11):385-389
[5] Huang Guang-bin,Zhou Hong-ming,Ding Xiao-jian,et al.Ex-treme learning machine for regression and multiclass classification[J].IEEE Transactions on Systems,Man,and Cybernetics-Part B:Cybernetics,2012,42(2):513-529
[6] Han Fei,Yao Hai-fen,Ling Qing-hua.An improved Extreme.Learning Machine Based on Particle Swarm Optimization[J].Bio-Inspired Computing and Applications Lecture Notes in Computer Science,2013,16(20):87-93
[7] Zhang Ying-nan,Teng Hong-fei.Detecting particle swarmoptimization.[J].Concurrency & Computation Practice & Ex-perience,2009,21(4):449-473
[8] Shi Y,Eberhart R C.A modified swarm optimizer[C]∥IEEEInternational Conference of Evolutionary Computation.Ancho-rage,Alaska:IEEE Press,May,1998
[9] Kennedy J,Eberhart R.Particle swarm optimization[C]∥Proceeding of IEEE International Conference on Neural Networks.Piscataway,NJ:IEEE Press,1995:1942-1948
[10] 王杰,郭晨龙.小波核极限学习机分类器[J].微电子学与计算机,2013,30(10):73-80
[11] 周有,侯铁双.基于小波核函数-支持向量算法的信号检测[J].计算机仿真,2013,30(1):263-267
[12] Zhang Li,Zhou Wei-da,Jiao Li-cheng.Wavelet Support Vector Ma chine[J].IEEE Transactions on Cybernetics,2004,34(1):33-39
[13] 陈忠杰,蔡勇,蒋刚.复高斯小波核函数的支持向量机研究[J].计算机应用研究,2012,29(9):3263-3265

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!