计算机科学 ›› 2016, Vol. 43 ›› Issue (Z11): 186-189.doi: 10.11896/j.issn.1002-137X.2016.11A.041

• 模式识别与图像处理 • 上一篇    下一篇

一种对光照变化鲁棒的移动目标前景提取方法

杨彪,倪蓉蓉,江大鹏   

  1. 常州大学信息科学与工程学院 常州213016,常州纺织工程学院能源管理实验室 常州213016,常州大学信息科学与工程学院 常州213016
  • 出版日期:2018-12-01 发布日期:2018-12-01
  • 基金资助:
    本文受复杂公共环境下群体行为尺度自适应建模与特定异常行为识别算法研究(61501060),复杂公共环境下特定群体异常行为识别算法研究(SBK20150271),常州大学博士引进人才项目(ZMF15020068)资助

Robust Moving Object Foreground Extraction Approach to Illumination Change

YANG Biao, NI Rong-rong and JANG Da-Peng   

  • Online:2018-12-01 Published:2018-12-01

摘要: 运动目标前景提取是对其进一步分析如特征提取、行为分析等的基础。RPCA(鲁棒主成分分析)分解可以得到较为完整的目标前景,但该方法对光照变化敏感,容易导致误检。利用Lab颜色空间中a,b通道对光照变化不敏感的特点,可以提高基于RPCA分解的前景提取方法对光照变化的鲁棒性,首先对图像L,a,b通道分别进行RPCA分解得到稀疏前景,然后利用大津阈值分割各通道二值化前景并采用种子点填充技术融合不同前景,最后利用形态学滤波优化融合结果提取准确的运动目标前景。实验结果表明,该方法可以在复杂背景下准确提取运动目标前景,且能有效克服光照变化的影响。

关键词: 鲁棒主成分分析,运动目标前景提取,Lab颜色空间,种子点填充

Abstract: Foreground extraction of moving object is the foundation for further analysis.An almost complete object foreground can be obtained by RPCA (Robust Principal Component Analysis) decomposition.However,this approach is sensitive to illumination change.The robustness of RPCA-based foreground extraction approach can be increased by the fact that a,b channels of Lab color space are not sensitive to illumination change.Initially,the sparse foregrounds of L,a,b channels are calculated based on RPCA decomposition respectively.Then Ostu thresholds are employed for binary foreground segmentation of each channel and seed filling technology is utilized for fusing different foregrounds.Finally,the accurate moving object foregrounds are extracted after improving the fusion results with morphology filtering.The experimental results indicate that the proposed method can accurately extract object foreground under complex environments while handling illumination change effectively.

Key words: Robust principal component analysis,Moving object foreground extraction,Lab color space,Seed filling

[1] 蒲松涛,查红彬.基于双帧图的视频物体分割[J].北京大学学报(自然科学版),2015,1(3):409-417
[2] 任克强,高晓林.基于五帧差和二维Renyi熵的运动目标检测[J].电子测量与仪器学报,2015,1(8):1179-1186
[3] Zivkovic Z.Improved Adaptive Gaussian Mixture Model forBackground Subtraction[C]∥Proceedings of the 17th International Conference on Pattern Recognition,2004.Los Alamitos:IEEE,2004:28-31
[4] 李博川,丁轲.结合阴影抑制的混合高斯模型改进算法[J].计算机工程与科学,2016,8(3):556-561
[5] 陶志颖,鲁昌华,汪济洲,等.一种改进型的时空混合高斯背景建模[J].电子测量与仪器学报,2014,8(9):986-990
[6] 李红波,唐培竣,吴渝.Kalman滤波器对混合高斯背景建模的改进[J].计算机工程与应用,2009,5(24):162-165
[7] Migliore D A,Matteucci M,Naccari M.A Revalution of Frame Difference in Fast and Robust Motion Detection[C]∥Procee-dings of the 4th ACM International Workshop on Video Surveillance and Sensor Networks,2006.New York:ACM,2006:215-218
[8] Yang Biao,Zou Ling.Robust Foreground Detection using Block-based RPCA [J].OPTIK,2015,126(23):4586-4590
[9] Tang Gong-guo,Nehorai A.Robust Principal Component Analysis Based on Low-Rank and Block-Sparse Matrix Decomposition[C]∥2011 45th Annual Conference on Information Sciences and Systems,2011.Baltimore:IEEE,2011:2213-2217
[10] Ding Xing-hao,He Li-han,Lawrence C.Bayesian Robust Principal Component Analysis [J].IEEE Transactions on Image Processing,2011,20(12):3419-3430
[11] Yang Biao,Lin Guo-yu,Zhang Wei-gong.Integration of Labmodel and EHOG for human appearance matching across disjoint camera views [J].Journal of Southeast University (English Edition),2012,28(4):422-427
[12] Candes E J,Li Xiao-dong,Ma Yi.Robust principal component analysis [J].Journal of the ACM,2011,58(3):1-20
[13] Wang Ping,Zhang Chu-han,Cai Si-jia,et al.Accelerated matrix recovery via random projection based on inexact augmented Lagrange multiplier method [J].Transactions of Tianjin University,2013,19(4):293-299
[14] Li Mu,Yan Ji-hong,Zhu Yan-he,et al.Improvement on Canny operator by algorithm of self-adaptive determining double-threshold [J].Journal of Jilin University (Engineering and Technology Edition),2008,38(4):913-918
[15] 张正峰,马少飞,李玮.新的种子点区域填充算法[J].计算机工程与应用,2009,5(6):201-202
[16] El-baf F,Bouwmans T,Vachon B.Fuzzy Integral for MovingObject Detection[C]∥2008 IEEE International Conference on Fuzzy Systems,2008.Hong Kong:IEEE,2008:1729-1736
[17] Wan Qin,Wang Yao-nan.Background subtraction based onadaptive non-parametric model[C]∥Proceedings of the 7th World Congress on Intelligent Control and Automation,2008.Chongqing:IEEE,2008:5960-5965

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!