计算机科学 ›› 2016, Vol. 43 ›› Issue (Z11): 147-150.doi: 10.11896/j.issn.1002-137X.2016.11A.032

• 模式识别与图像处理 • 上一篇    下一篇

优化的小波变换和改进的LDA相融合的人脸识别算法

楚建浦,何光辉,刘玉馨   

  1. 重庆大学数学与统计学院 重庆401331,重庆大学数学与统计学院 重庆401331,重庆大学数学与统计学院 重庆401331
  • 出版日期:2018-12-01 发布日期:2018-12-01
  • 基金资助:
    本文受国家自然科学基金项目:图像运动模糊不变量特征学习(61572087)资助

Face Recognition Algorithm Based on Fusion of Optimized Wavelet Transform and Improved LDA

CHU Jian-pu, HE Guang-hui and LIU Yu-xin   

  • Online:2018-12-01 Published:2018-12-01

摘要: 提出了一种优化的小波变换与改进的LDA相融合的人脸识别算法。首先对经过预处理的人脸图像进行2层小波变换并提取特征,然后对小波分解后的高频子带进行融合,并在改进的LDA下利用交替方向法求出投影矩阵和最优融合系数,再结合低频子带在改进的LDA下的特征表示,利用最近邻分类器进行分类。实验结果表明,该算法在ORL及YALE人脸库上的识别效果较传统的人脸识别算法更优。

关键词: 小波变换,融合系数,人脸识别

Abstract: A face recognition algorithm based on fusion of optimized wavelet transform and improved LDA(OWT+ILDA) was proposed.First,we extracted features of the preprocess face images through the 2-level wavelet transform,and an alternating direction method is used to solve the projection matrix and the corresponding optimal fusion coefficients of the high frequency wavelet sub-bands which are fused by the improved LDA.Then we combined representations of the low frequency and high frequency.Finally,the nearest neighbor classifier was used to perform face classification.Experiments were carried out on the ORL and YALE face databases,which indicate that the method is more effective than other traditional methods.

Key words: Wavelet transform,Coefficient of fusion,Face recognition

[1] Sharma M K,Sharma S.Wavelet Decomposition Based Principal Component Analysis for Face Recognition Using MATLAB[C]∥ International Conference on Communication Systems.2015:42-50
[2] 方杰,谭晓衡.基于小波变换的优化LDA人脸特征提取[J].传感器与微系统,2012,1(5):65-67
[3] Zhang Bai-ling,Zheng Hai-hong.Face recognition by applying wavelet sub-band representation and kernel associative memony [J].IEEE Trans on Neural Networks,2004,15(1):166-177
[4] Puyati W,Walairacht S,Walairacht A.PCA in wavelet domain for face recognition [C]∥Proc of the 8th International Confe-rence on Advanced Communication Technolog.IEEE Press,2006:450-456
[5] Huang Zheng-hai,Li Wen-juan,Wang Jun,et al.Face recogni-tion based on pixel-level and feature-level fusion of the top-le-vels wavelet sub-bands[J].Inf.Fusion,2015,22:99-104
[6] Turk M,Pentland A.Eigenfaces for recognition [J].Journal of Cognitive Neuroscience,1991,3(1):71-86
[7] Belhumeur P N,Hespanha J P,Eigenfaces K D.Fisherfaces:reco-gnition using class specific linear projection[M]∥Computer Vision-ECCV’96.Springer Berlin Heidelberg,1996:43-58
[8] Bansal A,Mehta K,Arora S.Face recognition using PCA and LDA algorithm[C]∥2012 Second International Conferenceon Advanced Computing & Communication Technologies(ACCT).2012:251-254
[9] 齐兴敏,尹朝庆,李智博.基于改进LDA算法的人脸识别[J].计算机与数字工程,2007,5(8):31-37
[10] Loog M,Duin R P W.Haeb-Umbach R.Multiclass linear dimension reduction by weighted pairwish Fisher criteria[J].IEEE Patt Anal Mach Intel,2001,3(7):762-766
[11] 张勇胜.一种新的线性判别准则在人脸识别中的应用[J].兰州理工大学学报,2008,4(2):101-103
[12] 董兰芳,任乐乐,董玉德.复杂光照下的人脸姿态估计[J].小型微型计算机系统,2016(3):598-602

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!