计算机科学 ›› 2016, Vol. 43 ›› Issue (Z11): 11-15.doi: 10.11896/j.issn.1002-137X.2016.11A.003
崔云飞,吴晓进,戴晔,程肖,郭岗
CUI Yun-fei, WU Xiao-jin, DAI Ye, CHENG Xiao and GUO Gang
摘要: 已有的 基于静态的执行失败判定时间阈值 的无响应任务容错调度算法,不能适应大数据处理中心动态的集群负载。针对该问题,提出判定无响应任务执行失败时间阈值自适应调整方法。基于该模型,设计了自适应的无响应任务容错调度算法(AFTS)。AFTS算法通过分析作业规模、单个任务大小和剩余作业推测执行时间等参数,自适应地调整无响应任务判定执行失败的时间阈值,以减少无响应任务对整体作业执行效率的影响,降低作业响应时间。基于开发的原型系统,验证了自适应判定方法,测试了算法的性能。实验结果表明,AFTS算法在作业响应时间等方面优于已有的无响应任务容错调度算法。
[1] Dean J,Ghemawat S.MapReduce:simplified data processing on large clusters [J].Communications of the ACM,2008,51(1):107-113 [2] 陆嘉恒.Hadoop实战[M].机械工业出版社,2012 [3] Adaptive Scheduler[EB/OL].https://issues.apache.org/jira/browse/MAPREDUCE-1380,3 [4] Improve speculative execution [EB/OL].https://issues.apache.org/jira/browse/MAPREDUCE-2039,3 [5] Speculative execution for Reads [EB/OL].https://issues.apa-che.org/jira/browse/CASSANSRA-4705,3 [6] Looking for speculative tasks is very expensive [EB/OL].https://issues.apache.org/jira/browse/MAPREDUCE-4499,3 [7] Dinu F, Ng T S E.Understanding the Effects and Implications of Compute Node Related Failures in Hadoop[R].HPDC’12.2012:18-22 [8] Lee K H,Lee Y J,Choi H,et al.Parallel Data Processing with MapReduce:A Survey[J].SIGMOD Record,2011,0(4):11-20 [9] Matei Z,Andy K,Anthony D.Improving MapReduce Performance in Heterogeneous Environments[C]∥8th Usenix Symposium on Operating Systems Design and Implementation.2008 [10] ResourceManagerRest [EB/OL].http://hadoop.apace.org/docs/r0.23.6,2013 |
No related articles found! |
|