计算机科学 ›› 2016, Vol. 43 ›› Issue (8): 212-215.doi: 10.11896/j.issn.1002-137X.2016.08.043

• 人工智能 • 上一篇    下一篇

可应用于气体泄漏源搜寻的融合算法

邓振文,孙启湲,贾云伟,袁志千   

  1. 天津理工大学天津市先进机电系统设计与智能控制重点实验室 天津300384,天津理工大学天津市先进机电系统设计与智能控制重点实验室 天津300384,天津理工大学天津市先进机电系统设计与智能控制重点实验室 天津300384,天津理工大学天津市先进机电系统设计与智能控制重点实验室 天津300384
  • 出版日期:2018-12-01 发布日期:2018-12-01
  • 基金资助:
    本文受国家自然科学基金(61201081),天津市高等学校科技发展基金(20130704)资助

Some Fusion Algorithms Used in Localization of Gas Leakage Source

DENG Zhen-wen, SUN Qi-yuan, JIA Yun-wei and YUAN Zhi-qian   

  • Online:2018-12-01 Published:2018-12-01

摘要: 多源信息融合算法主要应用于移动机器人对有害气体泄漏源的搜寻。为提高搜寻效率,用视觉传感器和嗅觉传感器共同获取环境信息,其中 嗅觉传感器 采用多气体传感器代替单气体传感器以提高测量的可靠性,测量位置也由单点向多点转变,并选用合适的算法分别实现各级数据的融合,最终决策移动机器人的搜寻方向。数据表明, 加权平均法用于融合同类气体传感器的数据,可减小噪声和仪器故障的影响;最小二乘法可最优估计未知参数,用于反求泄漏源信息,可初步估计泄漏源的位置和流量;概率赋值方式可容纳多种信息途径共同判断泄漏源,从而更合理地确定搜寻目标。

关键词: 多源信息,信息融合,有害气体,泄漏源,搜寻

Abstract: Multi-source information fusion algorithms were used in the searching of gas leakage source in this paper.In order to improve the efficiency,gas sensors and vision sensor were mixed to get information,single gas sensor measurement was replaced by the multiple gas sensors,and the measurement method was changed from single-point to multipoint.In each data fusion period,some suitable algorithms are applied to determine the searching direction of the robot.The result indicates that the weighted average method used to fuse the data of gas sensors with same kind can reduce the influence of the noises and other troubles,the least square method which can optimally estimate unknown parameters can originally estimate the location and flow of the leakage,and the Bayesian inference can accumulate different information source to judge the leakage,leading the robot to search the target more reasonable.

Key words: Multiple-source information,Information fusion,Harmful gas,Leakage source,Searching

[1] Shao Yun-ming,Zhu Ying,Huang De-xian,et al.Advances in study on parameter estimation of atmospheric contaminant dispersion[J].CIESC Journal,2011,2(10):2677-1681(in Chinese) 邵昀明,朱鹰,黄德先,等.有毒气体扩散源参数估计方法综述[J].化工学报,2011,2(10):2677-1681
[2] Liu Quan-yi,Su Bo-ni,Wang Sheng.Study on Fast Gas SourceIdentification Based on Wireless Sensor Network[J].China Safety Science Journal,2013,3(1):142-147(in Chinese) 刘全义,苏伯尼,王晟.基于无线传感器网络的气体泄漏源快速定位方法研究[J].中国安全科学学报,2013,3(1):142-147
[3] Meng Qing-hao,Li Fei.Review of Active Olfaction[J].ROBOT,2006,8(1):89-95(in Chinese) 孟庆浩,李飞.主动嗅觉研究现状[J].机器人,2006,8(1):89-95
[4] Jiang Ping,Meng Qing-hao,Zeng Ming,et al.A Novel Visual Search Method for Gas Leakage Source Based on Mobile Robot[J].ROBOT,2009,1(5):397-403(in Chinese) 蒋萍,孟庆浩,曾明,等.一种新的移动机器人气体泄漏源视觉搜寻方法[J].机器人,2009,1(5):397-403
[5] Ishida H,Ushiku T,Toyama S.Mobile robot path planning using vision and olfaction to search for a gas source[C]∥IEEE Sensors.Irvine,2005:1112-1115
[6] Zhang Jian-hua,Zhang Xiao-jun,Sun Ling-yu,et al.Basing on the Olfaction and Vision Information Fusion for Robot’s Odor Source Localization[C]∥IEEE International Conference on Robotics and Biomimetics.Tianjin,China,2010:845-849
[7] Lu Qiang,He Yang,Wang Jian.Localization of Unknown Odor Source Based on Shannon’s Entropy Using Multiple Mobile Robots[C]∥Conference of the IEEE Industrial Electronics Society.Dallas,2014:2798-2803
[8] Ding Xin-wei,Wang Shu-lan,Xu Guo-qing.A Review of Studies on the Discharging Dispersion of Flammable and Toxic Gases[J].Chemical Engineering,2000,8(1):33-35(in Chinese) 丁信伟,王淑兰,徐国庆.可燃及毒性气体泄漏扩散研究综述[J].化学工程,2000,8(1):33-35
[9] Yu Chang,Tian Guan-san.Study of Indoor Flammable Gas Lea-kage Processes[J].Journal of Shandong University of Architecture and Engineering,2006,1(3):243-246(in Chinese) 于畅,田贯三.可燃气体室内泄漏扩散的研究[J].山东建筑工程学院学报,2006,21(3):243-246
[10] 童志权.大气污染控制工程[M].北京:机械工业出版社,2006:395-401
[11] Zhou Ming-hui,Hu Shi-qiang,Chen Si-cong.Cylinder Unwar-ping and Real-Time Target Tracking Based on Omni-directional Camera[J].Computer Engineering,2013,9(11):1-4(in Chinese) 周明晖,胡士强,陈思聪.基于全景摄像头的柱面展开及实时目标跟踪[J].计算机工程,2013,9(11):1-4

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!