计算机科学 ›› 2016, Vol. 43 ›› Issue (3): 151-157.doi: 10.11896/j.issn.1002-137X.2016.03.029

• 信息安全 • 上一篇    下一篇

一种基于随机投影的加权社会网络隐私保护方法

兰丽辉,鞠时光   

  1. 江苏大学计算机科学与通信工程学院 镇江212013;沈阳大学信息工程学院 沈阳110000,江苏大学计算机科学与通信工程学院 镇江212013
  • 出版日期:2018-12-01 发布日期:2018-12-01
  • 基金资助:
    本文受国家自然科学基金项目(61003288,61111130184),国家教育部博士点基金资助

Privacy Preserving Method Based on Random Projection for Weighted Social Networks

LAN Li-hui and JU Shi-guang   

  • Online:2018-12-01 Published:2018-12-01

摘要: 针对加权社会网络的发布,提出了一种基于随机投影的隐私保护方法——向量集随机投影,该方法通过对加权社会网络的结构和边权重进行干扰实现敏感信息的隐私保护。通过对加权社会网络进行分割,得到节点数相同的若干个子网络;依据边空间理论,采用由边信息构建的向量描述子网络,构建加权社会网络的向量集作为发布模型;利用随机投影技术对原始向量集进行降维操作得到目标向量集;依据目标向量集构建加权社会网络的发布集。实验结果表明,向量集随机投影方法能够在确保隐私信息安全的同时仍然保护社会网络分析所需要的某些结构特征。

关键词: 社会网络,隐私保护,降维,随机投影,向量集

Abstract: A privacy preserving method based on random projection namely vectors set random projection was put forward on the publication of weighted social networks.The method protects sensitive information security through perturbing network structures and edge weights.It partitions weighted social networks into multiple sub-networks with the same number of nodes.Based on the theory of edge space,it describes the sub-networks by vectors consisted of edges information and constructs vector set of weighted social networks as the released model.It uses random projection technology for dimension reduction and maps the original vector set into the targeted vector set.It constructs the released weighted social networks based on the targeted vector set.The experimental results demonstrate that the vector set random projection method can ensure privacy information security and protect some structure characteristics of the social network analysis.

Key words: Social networks,Privacy preserving,Dimension reduction,Random projection,Vectors set

[1] Zhou B,Pei J,Luk W S.A brief survey on anonymization techniques for privacy preserving publishing of social network data[J].SIGKDD Explor.Newsl.,2008,0(2):12-22
[2] Tassa T,Cohen D.Anonymization of centralized and distributed social networks by sequential clustering[J].IEEE Transactions on Knowledge and Data Engineering,2013,5(2):311-324
[3] Babu K S,Jena S K.Anonymizing social networks:A generaliza-tion approach [J].Computers and Electrical Engineering,2013,9(7):1947-1961
[4] Hsu T,Liau C J,Wang D W.A logical framework for privacy-preserving social network publication [J].Journal of Applied Logic,2014,12(2):151-174
[5] Kulkarni A R,Yogish H K.Advanced Unsupervised Anony-mization Technique in Social Networks for Privacy Preservation [J].International Journal of Science & Research,2014(1):18-125
[6] Liu L,Wang J,Liu J,et al.Privacy preserving in social networks against sensitive edge disclosure :CMIDA-HiPSCCS 006-08[R].Department of Computer Science,University of Kentucky,KY,2008
[7] Das S,Egecioglu ,Abbadi A E.Anónimos:An LP-Based Approach for Anonymizing Edge-Weighted Social Network Graphs[J].IEEE Transactions on Knowledge and Data Engineering,2012,4(4):590-603
[8] Li Y,Shen H.Anonymizing Graphs Against Weight-Based Attacks[C]∥ Proc of the 2010 IEEE International Conference on Data Mining Workshops.IEEE,2010:491-498
[9] Skarkala M E,Maragoudakis M,Gritzalis S,et al.Privacy Pre-servation by k-Anonymization of Weighted Social Networks[C]∥Proc of IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining.IEEE,2012:423-428
[10] Liu K,Kargupta H,Ryan J.Random projection-based multipli-cative data perturbation for privacy preserving distributed data mining[J].IEEE Transactions on Knowledge and Data Engineering,2006,18(1):92-106
[11] Yang J,Zhao J S,Zhang J P.A Privacy Preservation Method for High Dimensional Data Mining[J].Acta Electronica Sinica,2013(11):2187-2192(in Chinese) 杨静,赵家石,张健沛.一种面向高维数据挖掘的隐私保护方法[J].电子学报,2013(11):2187-2192
[12] Aggarwal C C,Yu P S.On privacy-preservation of text andsparse binary data with sketches[C]∥ Proc of SIAM Confe-rence on Data Mining.Minneapolis,2007:57-67
[13] Wang S H.Graph Theory[M].Beijing:Science Press,2009:177-179(in Chinese) 王树禾.图论[M].北京:科学出版社,2009:177-179
[14] Wang X F,Li X,Chen G R.Network Science:An Introduction[M].Beijing:Higher education press,2012:205-208(in Chinese) 汪小帆,李翔,陈关荣.网络科学导论[M].北京:高等教育出版社,2012:205-208
[15] Nexus.The network repository [DB/OL].http://nexus.igra-ph.org
[16] Tan L.The theory and application of the dimension reduction on the high dimensional dataset[D].Changsha:National University of Defense Technology,2005(in Chinese) 谭璐.高维数据的降维理论及应用[D].长沙:国防科技大学,2005
[17] Liu B.Infrared face recognition methods based on the random projection and sparse representation[D].Xi’an:Xidian University,2009(in Chinese) 刘彬.基于随机投影和稀疏表征的红外人脸识别方法[D].西安:西安电子科技大学,2009
[18] Vempala S S.The Random Projection Method[M].AmericanMathematical Society,2004:1-6
[19] Matouek J.On variants of the Johnson-Lindenstrauss lemma[J].Random Structures & Algorithms,2008,33(2):142-156
[20] Frankl P,Maehara H.The Johnson-Lindenstrauss lemma and the sphericity of some graphs[J].Journal of Combinatorial Theo-ry,Series B,1988,44(3):355-362
[21] Arriaga R I,Vempala S.An Algorithmic Theory of Learning:Robust Concepts and Random Projection[C]∥Proc of the 40th Annual Symposium Foundations of Computer Science.IEEE,1999:616-623
[22] Lü L,Zhou T.Link prediction in complex networks:A survey[J].Physica A:Statistical Mechanics and its Applications,2011,390(6):1150-1170
[23] Sang Y,Shen H,Tian H.Reconstructing Data Perturbed byRandom Projections When the Mixing Matrix Is Known[M]∥Machine Learning and Knowledge Discovery in Databases.Springer Berlin:Heidelberg,2009:334-349
[24] Zou L,Chen L,zsu M T.K-Automorphism:General Frame-work for Privacy reserving Network Publication [C]∥Proc of VLDB’09.Lyon,France,2009:946-957
[25] Newman M E J.The structure and function of complex networks[J].Society for Industrial and Applied Mathematics,2003,5(2):167-256

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!