计算机科学 ›› 2017, Vol. 44 ›› Issue (Z11): 178-183.doi: 10.11896/j.issn.1002-137X.2017.11A.037

• 模式识别与图像处理 • 上一篇    下一篇

基于关键帧的连续手语语句识别算法研究

郭鑫鹏,黄元元,胡作进   

  1. 南京航空航天大学计算机科学与技术学院 南京210016,南京航空航天大学计算机科学与技术学院 南京210016,南京特殊教育师范学院数学与信息科学学院 南京210038
  • 出版日期:2018-12-01 发布日期:2018-12-01
  • 基金资助:
    本文受扬州市“绿杨金凤”优秀博士项目,江苏省“双创”项目资助

Research on Continuous Sign Language Sentence Recognition Algorithm Based on Key Frame

GUO Xin-peng, HUANG Yuan-yuan and HU Zuo-jin   

  • Online:2018-12-01 Published:2018-12-01

摘要: 目前,对于动态手语的识别大多只是针对手语词汇的,对连续的手语语句的识别研究以及相应成果较少,原因在于难以对其进行有效的分割。提出了一种基于加权关键帧的手语语句识别算法。关键帧可以看作是手语词汇的基本组成单元,根据关键帧即可得到相关词汇,并将其组成连续的手语语句,从而避免了对手语语句直接做分割的难点。借助于体感设备,首先提出了一种基于手语轨迹的自适应关键帧提取算法,然后根据关键帧包含的语义对其进行加权处理,最后设计了基于加权关键帧序列的识别算法,得到连续的手语语句。实验证明,设计的算法可以实现对连续手语语句的实时识别。

关键词: 手语语句识别,关键帧,手语轨迹,体感设备

Abstract: At present,most of the dynamic sign language recognition is only for sign language words.The continuous sign language sentence recognition research and the corresponding results are less,because the segmentation of such sentence is very difficult.In this paper,a sign language sentence recognition algorithm was proposed based on weighted key frames.Key frames can be regarded as the basic unit of sign word,therefore,according to the key frames,we can get related vocabularies,and thus we can further organize these vocabularies into meaningful sentence.Such work can avoid the hard point of dividing sign language sentence directly.With the help of Kinect,i.e.motion-control device,a kind of self-adaptive algorithm of key frame extraction based on the trajectory of sign language was brought out in the paper.After that,the key frame was given to weight according to its semantic contribution.Finally,the recognition algorithm was designed based on these weighted key frames and thus got the continuous sign language sentence.Experiments show that the algorithm designed in this paper can realize real-time recognition of continuous sign language sentences.

Key words: Sign language sentence recognition,Key frame,Gesture trace,Kinect motion-control device

[1] STARNER T,PENTLAND A.Real-Time American Sign Language Recognition Using Desk and Wearable Computer Based Video[C]∥IEEE Transaction on Pattern Analysis and Machine Intelligence.1998:1371-1375.
[2] VON AGRIS U,ZIEREN J,CANZLER U,et al.Recent deve-lopments in visual sign language recognition[J].Universal Access in the Information Society,2008,6(4):323-362.
[3] GROBEL K,ASSAN M.Isolated sign language recognitionusing hidden Markov models[C]∥IEEE International Confe-rence on Systems.1997:162-167.
[4] RAVIKIRAN J,MAHESH K,MAHISHI S,et al.Finger Detection for Sign Language Recognition[J].International Association of Engineers,2009,2174(1):489-493.
[5] GUO X L,YANG T T.Gesture recognition based on HMM-FNN model using a Kinect[J].Journal on Multimodal User Interfaces,2016:1-7.
[6] 谈家谱,徐文胜.基于Kinect的指尖检测与手势识别方法[J].计算机应用,2015,35(6):1795-1800.
[7] HALIM Z,ABBAS G.A Kinect-Based Sign Language HandGesture Recognition System for Hearing- and Speech-Impaired:A Pilot Study of Pakistani Sign Language[J].Assistive Technology,2015,27(1):34-43.
[8] YAN H,ZHANG M,TONG J,et al.Real time robust multi-fingertips tracking in 3D space using Kinect[J].Journal of Computer-Aided Design and Computer Graphics,2013,5(12):1801-1809.
[9] JIANG F,GAO W,WANG C L,et al.Development in Signer-Independent Sign Language Recognition and the Ideas of Solving Some Key Problems[J].Journal of Software,2007,18(3):477-489.
[10] NASRI S,BEHRAD A,RAZZAZI F.A novel approach for dynamic hand gesture recognition using contour-based similarity images[J].International Journal of Computer Mathematics,2015,92(4):662-685.
[11] LIN Y,CHAI X,ZHOU Y,et al.Curve Matching from the Viewof Manifold for Sign Language Recognition[C]∥ Workshop on Feature and Similarity Learning for Computer Vision (FSLCV).ACCV,2014:233-246.
[12] PU J,ZHOU W,ZHANG J,et al.Sign Language RecognitionBased on Trajectory Modeling with HMMs[C]∥International Conference on Multimedia Modeling.2016:686-697.
[13] STARNER T,PENTL A.Visual Recognition of American Sign Language Using Hidden Markov Models[C]∥International Workshop on Automatic Face & Gesture Recognition.1995:189-194.
[14] 方高林,高文,陈熙霖,等.基于SRN/HMM的非特定人连续手语识别系统[J].软件学报,2002,13(11):2169-2175.
[15] 中国残疾人联合会教育就业部,中国聋人协会.中国手语[M].华夏出版社,2003.
[16] LI S R,HUANG Y Y,HU Z J,et al.Key Frame Detection Algorithm based on Dynamic Sign Language Video for the Non Specific Population[J].International Journal of Signal Processing:Image Processing and Pattern Recognition,2015,8(12):135-148.
[17] SHI M M,HUANG Y Y,HU Z J.Dynamic Sign Language Re-cognition Algorithm Using Weighted Gesture Units[J].Journal of Information and Computational Science,2015,12(15):5611-5621.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!