计算机科学 ›› 2017, Vol. 44 ›› Issue (Z11): 169-174.doi: 10.11896/j.issn.1002-137X.2017.11A.035

• 模式识别与图像处理 • 上一篇    下一篇

基于压缩感知和SVR的自学习单幅图像超分辨率重建

秦绪佳,单扬洋,肖佳吉,郑红波,张美玉   

  1. 浙江工业大学计算机科学与技术学院 杭州310032;浙江省可视媒体智能处理技术研究重点实验室 杭州310023,浙江工业大学计算机科学与技术学院 杭州310032,浙江工业大学计算机科学与技术学院 杭州310032,浙江工业大学计算机科学与技术学院 杭州310032,浙江工业大学计算机科学与技术学院 杭州310032
  • 出版日期:2018-12-01 发布日期:2018-12-01
  • 基金资助:
    本文受国家自然科学基金(61672462,3),浙江省科技计划(2016C33165)资助

Self-learning Single Image Super-resolution Reconstruction Based on Compressive Sensing and SVR

QIN Xu-jia, SHAN Yang-yang, XIAO Jia-ji, ZHENG Hong-bo and ZHANG Mei-yu   

  • Online:2018-12-01 Published:2018-12-01

摘要: 针对依靠外部图像库的超分辨率(SR)重建算法训练耗时长、容易出现错误高频细节的问题,提出了一种基于压缩感知(CS)理论和支持向量回归(SVR)的单幅图像超分辨率重建方法。对降质图像本身训练SVR模型,充分挖掘图像自身的自相似特点。训练过程中先对输入图像边缘进行检测并对图像块进行分类,然后稀疏编码图像块,再根据图像的标签向量和稀疏表示矩阵训练得到SVR模型,并在测试过程中利用该模型预测高分辨率(HR)图像。实验结果表明,与基于外部库方法重建图像的方法相比,该算法所得结果的细节更加真实;与双三次插值方法相比该算法所得结果的边缘更加清晰。

关键词: 超分辨率重建,压缩感知,支持向量回归,双三次插值

Abstract: For the long learning time and the easiness to occur wrong and high frequecy details of super-resolution(SR) reconstruction algorithm which traditionally depends on external image database,this paper presented a single image SR reconstruction method based on compressive sensing(CS) and support vector regression(SVR). SVR model is training for degarded image itself to make full use of the self similarity of the image.In training stage,we firstly detected image edge and classified image patch into low and high frequency blocks.Then we did image block sparse coding,and trained a SVR model using image’s label vector and sparse representation matrix.Finally,we predicted the high resolution(HR) image with SVR using this model in the testing stage.Experiments show that the proposed method is more rea-listic than the method based on external library,and the edge is more clear than bicubic interpolation method.

Key words: Super-resolution reconstruction,Compressive sensing,Support vector regression(SVR),Bicubic interpolation

[1] LIN Z C,SHUM H Y.Fundamental limits of reconstruction-based super-resolution algorithms under local translation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(1):83-97.
[2] YANG J C,WRIGHT J,HUANG T.Image super-resolution as sparse representation of raw image patches[C]∥Proceedings of 2008 IEEE Conference on Computer Vision and Pattern Recognition.Alaska:IEEE Computer Press,2008:1-8.
[3] FREEMAN W T,PASZTOR E C,CARMICHAEL O T.Learning low-level vision[J].International Journal of Computer Vision,2000,40(1):25-47.
[4] DAI S,HAN M,XU W,et al.Soft edge smoothness prior for alpha channel super resolution[C]∥Proceedings of IEEE International Conference on Computer Vision.Washington,DC:IEEE Computer Press,2007:5-8.
[5] DURARLE M F,DAVENPORT M A.Single-Pixel Imaging via Compressive Sampling[J].IEEE Signal Processing Magazine,2008,25(2):83-91.
[6] YANG M C,WANG Y C F.A Self-Learning Approach to Single Image Super-Resolution[J].IEEE Transactions on Multimedia,2013,15(3):498-508.
[7] ZHANG K B,GAO X B,TAO D C.Multi-scale dictionary for single image super-resolution[C]∥IEEE Conference on Computer Vision and Pattern Recognition.Alaska,IEEE Computer Press,2012:1114-1121.
[8] YU G S,GUILLERMO S,STPHANE M.Solving Inverse Pro-blems With Piecewise Linear Estimators:From Gaussian Mixture Models to Structured Sparsity[J].IEEE Transactions on Image Processing,2012,21(5):2418-2499.
[9] PELEG T,ELAD M.A Statistical Prediction Model Based on Sparse Representations for Single Image Super-Resolution[J].IEEE Transacations on Image Processing,2014,23(6):2569-2582.
[10] LI D L,MERSEREAU R M,SIMSKE S J.Blind Image Deconvolution Using Support Vector Regression[C]∥Proceedings IEEE International Conference on Acoustics,Speech and Signal Process.Washington,DC:IEEE Computer Press,2005:113-116.
[11] LI D L,RUSSELL S S.Single Image super-resolution based on support vector regression[C]∥Proceedings of International Joint Conference on Neural Networks.Washington,DC:IEEE Computer Press,2006:2898-2901.
[12] YANG M C,CHU C T,WANG YC F.Learning Sparse Image Representation With Support Vector Regression For Single Image Super Resolution[C]∥IEEE International Conference on Image Processing.Washington,DC:IEEE Computer Press,2010:1973-1976.
[13] GLASNER D,BAGON S,IRANI M.Super-Resolution From a Single Image[C]∥Proceedings of 2009 IEEE 12th International Conference on Computer Vision.Kyoto:IEEE Computer Press,2009:349-356.
[14] ZONTAK M,IRANI M.Internal Statistics of a Single Natural Image[C]∥Proceedings of 2011 IEEE Conference on Computer Vision and Pattern Recognition.America:Colorado Springs,2011:977-984.
[15] MAIRAL J,BACH F,PONCE J.Online Learning for Matrix Factorization and Sparse Coding[J].Journal of Machine Lear-ning Theory,2010,11(1):19-60.
[16] TAPPEN M F,RUSSELL B C,FREEMAN W T.Exploiting the Sparse Derivative Prior for Super-Resolution and Image Demosaicing[C]∥proceedings of IEEE workshop on Statistical and Computational Theories of Vision.Fort Collins:IEEE Computer Press,2003:1-24.
[17] EFRON B,HASTIE T,JOHNSTONE I.Least Angle Regression[J].The Annals of Statistics,2004,32(2):407-499.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!