计算机科学 ›› 2010, Vol. 37 ›› Issue (5): 219-222.

• 人工智能 • 上一篇    下一篇

具有启发式探测及自学习特征的降维对称微粒群算法

邵增珍,王洪国,刘弘   

  1. (山东师范大学信息科学与工程学院 济南250014)
  • 出版日期:2018-12-01 发布日期:2018-12-01
  • 基金资助:
    本文受国家自然科学基金(60970004),山东省科技攻关项目(2009GG10001008),济南市高校院所自主创新项目((200906001)资助。

Dimensionality Reduction Symmetrical PSO Algorithm Characterized by Heuristic Detection and Self-learning

SHAG Zeng-zhen,WANG Hong-guo,LIU Hong   

  • Online:2018-12-01 Published:2018-12-01

摘要: 提出对称微粒群算法SymPSO_HD,用以提高PSO算法的搜索能力。引入种群分布墒以保证种群的分布性;引入具有探测特征的启发式粒子,用以影响普通粒子的位置;提出部域内的克隆变异选择策略及全局范围内的降维对称粒子策略,用以增强粒子的局部及全局学习能力。仿真实验及分析结果表明,SymPSO_HD算法搜索能力稳定,适应性强,能以较大概率收敛到全局最优。

关键词: 降维对称微粒群算法,种群分布嫡,启发式探测,克隆变异

Abstract: A novel Symmetrical PSO algorithm (SymPSO_HD) was proposed to improve the search ability of PSO algorithm. To initialize the cluster effectively, population scatter entropy strategy was introduced. In order to improve the particle's position vector, a special kind of particle characterized by detection was proposed too. And to enhance the partide's learning ability both in local and global domain, we put forward the clone-mutation-selection strategy in neighborhood and the dimensionality reduction symmetrical strategy in global area. Simulation and analysis show that SymPSO_HD algorithm has stable search ability and strong adaptability, and can converge to the global optimum with large probability.

Key words: Dimensionality reduction symmetrical PSO, Population scatter entropy, Heuristic detection, Clone and mutation

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!