计算机科学 ›› 2010, Vol. 37 ›› Issue (5): 219-222.
• 人工智能 • 上一篇 下一篇
邵增珍,王洪国,刘弘
出版日期:
发布日期:
基金资助:
SHAG Zeng-zhen,WANG Hong-guo,LIU Hong
Online:
Published:
摘要: 提出对称微粒群算法SymPSO_HD,用以提高PSO算法的搜索能力。引入种群分布墒以保证种群的分布性;引入具有探测特征的启发式粒子,用以影响普通粒子的位置;提出部域内的克隆变异选择策略及全局范围内的降维对称粒子策略,用以增强粒子的局部及全局学习能力。仿真实验及分析结果表明,SymPSO_HD算法搜索能力稳定,适应性强,能以较大概率收敛到全局最优。
关键词: 降维对称微粒群算法,种群分布嫡,启发式探测,克隆变异
Abstract: A novel Symmetrical PSO algorithm (SymPSO_HD) was proposed to improve the search ability of PSO algorithm. To initialize the cluster effectively, population scatter entropy strategy was introduced. In order to improve the particle's position vector, a special kind of particle characterized by detection was proposed too. And to enhance the partide's learning ability both in local and global domain, we put forward the clone-mutation-selection strategy in neighborhood and the dimensionality reduction symmetrical strategy in global area. Simulation and analysis show that SymPSO_HD algorithm has stable search ability and strong adaptability, and can converge to the global optimum with large probability.
Key words: Dimensionality reduction symmetrical PSO, Population scatter entropy, Heuristic detection, Clone and mutation
邵增珍,王洪国,刘弘. 具有启发式探测及自学习特征的降维对称微粒群算法[J]. 计算机科学, 2010, 37(5): 219-222. https://doi.org/
SHAG Zeng-zhen,WANG Hong-guo,LIU Hong. Dimensionality Reduction Symmetrical PSO Algorithm Characterized by Heuristic Detection and Self-learning[J]. Computer Science, 2010, 37(5): 219-222. https://doi.org/
0 / / 推荐
导出引用管理器 EndNote|Reference Manager|ProCite|BibTeX|RefWorks
链接本文: https://www.jsjkx.com/CN/
https://www.jsjkx.com/CN/Y2010/V37/I5/219
Cited