计算机科学 ›› 2014, Vol. 41 ›› Issue (6): 208-213.doi: 10.11896/j.issn.1002-137X.2014.06.041

• 人工智能 • 上一篇    下一篇

基于残余抗原学说的动态记忆风险识别模型

陶媛,胡珉,王萍   

  1. 上海大学计算中心 上海200072;上海大学悉尼工商学院 上海201800;上海大学计算中心 上海200072
  • 出版日期:2018-11-14 发布日期:2018-11-14
  • 基金资助:
    本文受上海市科委“科技创新行动计划”重点项目(13511504803),上海高校青年教师培养资助

Dynamic Memory Risk Identification Model Based on Residual Antigen

TAO Yuan,HU Min and WANG Ping   

  • Online:2018-11-14 Published:2018-11-14

摘要: 以小概率事件风险识别为研究对象,提出一个基于残余抗原学说的动态记忆风险识别模型DMRIM。DMRIM针对小概率事件风险的无规则等特点,将风险的强度和频度直观地、动态地映射为残余抗原的浓度,以残余抗原刺激免疫记忆、指导抗体进化、控制识别器的生命周期,突破了传统的记忆细胞生命周期,实现了识别器分布自制,提高了小概率事件的辨识能力。仿真实验表明,DMRIM充分体现免疫记忆的动态性,有效地识别小概率事件,其 可行性在实际应用中得到了验证。

关键词: 残余抗原,免疫记忆,动态风险识别,小概率事件 中图法分类号TP18文献标识码A

Abstract: The paper focused on the risk identification of small probability events.A Residual Antigen based Dynamic Memory Risk Identification Model DMRIM was proposed.As small probability events have no rules to follow,the intensity and frequency of risk is intuitively and dynamically mapped to the concentration of residual antigen by DMRIM. By using residual antigent,DMRIM stimulates immune memory,guides antibody evolution and controls the life-cycle of the detector.It breaks through traditional memory cell life-cycle and realizes distribution and self-made of the detector,thereby improving recognition of small probability events.The simulation experiments prove that DMRIM achieves dynamic memory and recognize small probability events effectively.Its feasibility is verified in practical application.

Key words: Residual antigen,Imunne memory,Dynamic risk identification,Small probability

[1] Dasgupta D,Yu Sen-hua,Nino F.Recent Advances in Artificial Immune Systems:Models and Applications[J].Applied Soft Computing,2011,11(2):1574-1587
[2] Boukerche A,Juca K R L,Sobral J B,et al.An artificial immune based intrusion detection model for computer and telecommunication systems[J].Parallel Computing,2004,30(5/6):629-646
[3] 李涛,刘赛,苏贝.人工免疫记忆模型研究[J].计算机技术与发展,2006,6(7):29-31
[4] Jerne N K.The immune system[J].Scientific American,1973,229(1):51-60
[5] Tan K C,Goh C K,Mamun A A.An evolutionary artificial immune system for multi-objective optimization[J].European Journal of Operational Research,2008,7(2):371-392
[6] 尚荣华,焦李成,公茂果,等.免疫克隆算法求解动态多目标优化问题[J].软件学报,2007,1(18):2700-2711
[7] 蔡舒平,戴理,倪淏.基于Fisher 信息理论的突变检测新方法[J].物理学报,2013,62(18):1-9
[8] 颜鹏程,侯威,胡经国.基于Logistic模型的均值突变时间序列临界预警研究[J].物理学报,2012,61(18):1-8
[9] Castro P A D,Zuben F J V.Multi-objective Feature SelectionUsing a Bayesian Artificial Immune System[J].International Journal of Intelligent Computing and Cybernetics,2010,3(2):235-256
[10] Ciccazzo A,Conca P,Nicosia G,et al.An Advanced Clonal Selection Algorithm with Ad Hoc Network-Based Hypermutation Operators for Synthesis of Topology and Sizing of Analog Electrical Circuits[C]∥Artificial Immune Systems-7th International Conference,ICARIS 2008,Proceedings,2008.Tiergartenstrasse 17,Heidelberg,D-69121,Germany:Springer Verlag,2008:60-70
[11] Wilson W O,Garrett S M.Modelling Immune Memory for Prediction and Computation[C]∥3rd International Conference in Artificial Immune Systems,ICARIS2004,4.Catania,Sicily,Italy:Springer,2004:386-399
[12] 陶媛,吴耿锋,胡珉.一种基于进化与免疫的动态多目标人工免疫系统模型[J].计算机科学,2010,37(1):217-22
[13] De Castro L N,Von Zuben F J.Clonal selection algorithm with engineering applications[C]∥GECCO 2002-Workshop Procee-dings,2000.Las Vegas:Proc.of GECCO’00,0:36-37
[14] Aickelin U,Greensmith J.Sensing danger:Innate immunology for intrusion detection[J].Information Security Technical Report,2007,12(4):218-227

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!