计算机科学 ›› 2019, Vol. 46 ›› Issue (11): 291-296.doi: 10.11896/jsjkx.180901640
徐登1,2, 黄晓东3
XU Deng1,2, HUANG Xiao-dong3
摘要: 基于图像处理技术的火灾监测,是近年来火灾监控领域的重要分支。对于开阔场景的火灾监测,利用火灾发生时产生的烟雾和火焰的动、静特性,以双流(Two-Stream)卷积神经网络作为理论基础对火灾进行检测识别。双流卷积神经网络采用空间流与时序流分别提取视频中的空间信息与时序信息,然而火灾初期的信息较为微弱,特征不够明显。为进一步提高初期的识别率,提出一种空间增强网络作为双流卷积神经网络的空间流来提取并增强视频的空间信息。空间增强网络同时对当前帧图片Vt和上一帧图片Vt-1做卷积,用Vt的卷积特征与Vt-1的卷积特征做减法,保留卷积特征差异性,再将卷积特征差与当前帧Vt的卷积特征相加,从而增强对Vt的空间特征卷积;双流卷积网络的时间卷积流对当前帧的光流图片Vt′进行时序特征卷积;最后将增强后的空间特征与时序特征融合进行分类。实验结果表明,改进后的双流卷积网络的识别率比原始的双流卷积网络提高了6.2%,且在公开数据集上的测试准确率达到了92.15%,从而证明了该方法的有效性和优越性。此外,与其他方法相比,该网络具有低深度、高识别率的特征,不仅能提高火灾和烟雾的识别率,而且实现了火灾的早期发现,缩短了检测时间。
中图分类号:
[1]LI H Y.Research on large space fire monitoring technologybased on image processing [D].Chongqing:Chongqing University,2008.(in Chinese) 李洪玉.基于图像处理的大空间火灾监测技术的研究[D].重庆:重庆大学,2008. [2]FERNANDEZ A,ALVAREZ M X,BIANCONI F.Texture description through histograms of equivalent patterns [J].Journal of Mathematical Imaging and Vision,2013,1(4):76-102. [3]AHMED A.Machine Learning Approach for Adaptive Automated Smoke Region Detection [D].Swiss Federal Institute of Techology Zurich,2015:1735-1780. [4]YANG J,CHEN F,ZHANG W.Visual-based smoke detection using support vector machine[C]∥2008 Fourth International Conference on Natural Computation.IEEE,2008:301-305. [5]TUNG T X,KIM J M.An effective four-stage smoke-detectionalgorithm using video images for early fire-alarm systems [J].Fire Safety Journal,2011,46(5):276-282. [6]ZHANG Q,XU J,XU L.Deep Convolutional Neural Networks for Forest Fire Detection[C]∥2016 International Forum on Management,Education and Information Technology Application.2016[7] XU Z G,XU J L.Automatic Fire Smoke Detection Based on Image Visual Features [C]∥International Conference on Computational Intelligence and Security Workshops (CISW 2007).2007:316-319[8]ZHAO L.Research on video-based fire smoke detection algorithm [D].Xiamen:Huaqiao University,2017 (in Chinese) 赵亮.基于视频的火灾烟雾检测算法的研究[D].厦门:华侨大学,2017. [9]NODA S,UEDA K.Fire detection in tunnels using an image processing method[C]∥Proceeding of Vehicle Navigation and Information Systems Conference.1994:57-62. [10]XU W S,TIAN C Z,FANG S M.Automatic fire identification based on image visual features [J].Computer Engineering,2003,29(18):112-113.(in Chinese) 许维胜,田长征,方盛明.基于图像视觉特征的火灾自动识别[J].计算机工程,2003,29(18):112-113. [11]SONG W G,FAN W C,WU L B.Fire images detection method based on artificial neural network [J].Fire Science,1999(3):49-56.(in Chinese) 宋卫国,范维澄,吴龙标.基于人工神经网络的火灾图像探测方法[J].火灾科学,1999(3):49-56. [12]SUN C.Research and Design of Fire Detection Algorithm Based on Video Image [D].Jinan:Shandong University,2018.(in Chinese) 孙琛.基于视频图像的火灾检测算法研究与设计[D].济南:山东大学,2018. [13]TAO C,ZHANG J,WANG P.Smoke Detection Based on Deep Convolutional Neural Networks[C]∥International Conference on Industrial Informatics Computing Technology.2017:150-153. [14]HORN B,SCHUNCK B.Determining optical flow[J].ArtificialIntelligence,1981,17:185-203. [15]MEMIN E,PEREZ P.Hierarchical estimation and segmentation of dense motion fields [J].International Journal of Computer Vision,2002,46(2):129-155[16]ZHANG J H,ZHUANG J,DU H F,et al.One fire flame recognition algorithm based on video multi-feature fusion [J].Journal of Xi’an Jiaotong University,2006,40(7):811-814.(in Chinese) 张进华,庄健,杜海峰,等.一种基于视频多特征融合的火焰识别算法[J].西安交通大学报,2006,40(7):811-814. [17]KOSIOREK A.神经网络中的注意力机制[J].机器人产业,2017(6):14-19. [18]KRIZHEVSKY A,SUTSKEVER I,HINTON G E.ImageNet classification with deep convolution neural networks[C]∥International Conference on Neural Information Processing Systems.Curran Associates Inc.,2012:1097-1105. [19]SIMONYAN K,ZISSERMAN A.Two-Stream ConvolutionalNetworks for Action Recognition in Videos [J].Computational Linguistics,2014,1(4):568-576. [20]JIA Y,SHELHAMER E,DONAHUE J,et al.Caffe:Convolutional architecture for fast feature embedding[C]∥Proceedings of the 22nd ACM international conference on Multimedia.ACM,2014:675-678. [21]DONAHUE J,ANNE HENDRICKS L,GUADARRAMA S,et al.Long-Term Recurrent Convolutional Networks for Visual Recognition and Description[C]∥IEEE Conference on ComputerVision and Pattern Recognition (CVPR).2015:2625-2634. [22]DENG J,DONG W,SOCHER R,et al.ImageNet:A large-scale hierarchical image database[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2009. [23]SHARMA J,GRANMO O C,GOODWIN M,et al.Deep Convolutional Neural Networks for Fire Detection in Images[C]∥Engineering Applications of Neural Networks(EANN 2017).Cham:Springer,2017:183-193. |
[1] | 胡燕花,唐鹏,金炜东,何正伟. 铁路视频序列的FOE的估计 Estimation of FOE for Railway Video Sequences 计算机科学, 2018, 45(7): 226-229. https://doi.org/10.11896/j.issn.1002-137X.2018.07.039 |
[2] | 陈诚,常侃,莫彩网,李天亦,覃团发. 基于非局部均值和总变分最小化的单视频超分辨率算法 Single Video Super-resolution Algorithm Based on Non-local Means and Total Variation Minimization 计算机科学, 2018, 45(3): 263-267. https://doi.org/10.11896/j.issn.1002-137X.2018.03.042 |
[3] | 刘赏,董林芳. 人群运动方向异常检测算法 Abnormal Crowd Movement Direction Detection Algorithm 计算机科学, 2013, 40(Z11): 337-340. |
|