计算机科学 ›› 2014, Vol. 41 ›› Issue (6): 176-179.doi: 10.11896/j.issn.1002-137X.2014.06.034

• 人工智能 • 上一篇    下一篇

多agent规划领域中的观察信息约简

伍选,文中华,汪泉,常青   

  1. 湘潭大学信息工程学院 湘潭411105;湘潭大学信息工程学院 湘潭411105;湘潭大学信息工程学院 湘潭411105;湘潭大学信息工程学院 湘潭411105
  • 出版日期:2018-11-14 发布日期:2018-11-14
  • 基金资助:
    本文受国家自然科学基金项目(61070232,61272295)资助

Observation Reduction in Multi-agent Domain

WU Xuan,WEN Zhong-hua,WANG Quan and CHANG Qing   

  • Online:2018-11-14 Published:2018-11-14

摘要: 观察信息约减是近年来不确定规划中的研究热点,但研究集中于单个agent的环境,在多agent规划环境下的研究不足。面对多agent环境下的规划问题,设计了一种用于不确定规划领域中多agent求解协同规划解的ORMAP算法。该算法首先根据基于模型检测的不定规划中的状态分层思想,将问题领域的所有状态进行分层,以此来减少不同的agent的冲突,再利用以最小代价优先的回溯法搜索协同规划解,同时在解的搜索过程中选择最小的观察信息集,使求出的协同规划解在众多符合条件的协同规划解中所需要的观察信息最少或接近最少,这样就达到了信息约简的目的。最后通过实验证明,在考虑了观察信息约简的限制条件后,这种算法的效率较高。

关键词: 多agent,智能规划,不确定规划,观察信息约简,状态分层 中图法分类号TP18文献标识码A

Abstract: Observation information reduction is a hot area of the uncertainty planning research in recent years,but these researches concentrate on the single agent’s environment,and the planning problem related to observation information reduction in the multi-agent domain is lack of researching.Confronted with the planning problem in the multi-agent domain,this paper designed an ORMAP algorithm which can find a collaborative planning in the nondeterministic multi-agent domain.At first,the ORMAP algorithm layers all states in the problem domain according to the model-based hierarchical states thought in order to avoid the conflicts between different agents.Then,it searches the collaborative planning solution with the method of the backtracking prior to minimum cost,meanwhile reduces the observation information.At last,a cooperative planning solution can be obtained and it is the one which needs least amount of observation information in all cooperative planning solution to the problem domain,so that it reaches the point.Finally,the experiment shows the efficiency of this algorithm is higher after considering the constraints of the observation information reduction.

Key words: Multi-agent,Intelligent planning,Uncertainty planning,Observation information reduction,Hierarchical state

[1] Standley T.Finding Optimal Solutions to the Multi-agent Pathfinding Problem Using Heuristic Search[C]∥Proceedings of the 2010AAAI.Atlanta,2010:173-178
[2] Jansen R,Sturtevant N.A new approach to cooperative path-finding[C]∥Proceedings of the 2008AAMAS.Estoril,2008:1401-1404
[3] Larbi R B,Konieczny S,Marquis P.Extending Classical Planning to the Multi-agent Case:A Game-theoretic Approach[C]∥Proceedings of the ECSQARU-07.Hammamet,2007:731-742
[4] Wang K-H C,Botea A.Fast and Memory-Efficient Multi-agent Pathfinding[C]∥Proceedings of the ICAPS-08.Sydeny,2008:380-387
[5] Huang Wei,Zhang Dong-mo,Zhang Yan,et al.Bargain overJoint Plans[C]∥Proceedings of the PRICAI-10.Hanoi,2010:608-613
[6] Huang Wei,Wen Zhong-hua,Jiang Yun-fei,et al.Observationreduction for strong plans[C]∥Proceedings of the 20th International Joint Conference on Artificial Intelligence(IJCAI-07).Hyderabad,2007:1930-1935
[7] 饶东宁,蒋志华,姜云飞,等.对不确定规划中观察约简的进一步研究[J].软件学报,2009,0(5):1254-1268
[8] 周俊萍,殷明浩,谷文祥,等.部分可观察强规划中约减观察变量的研究[J].软件学报,2009,0(2):290-304
[9] Huang Wei,Peng Hong.Observation Reduction for State-action Tables[C]∥Proceedings of the International Conference on Computational Intelligence and Security.Beijing,2009:10-14
[10] Huang Wei,Wen Zhong-hua,Jiang Yun-fei,et al.StructuredPlans and Observation Reduction for Plans with Context[C]∥Proceeding of 21th International Joint Conference on Artificial Intelligence(IJCAI 09).Pasadena,2009:1721-1727
[11] 常青,文中华,胡雨隆,等.强循环规划的观察信息约简[J].计算机工程与应用,2012,8(2):148-150
[12] 文中华,黄巍,刘任任,等.模型检测规划中的状态分层方法[J].软件学报,2009,20(4):858-869

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!