计算机科学 ›› 2020, Vol. 47 ›› Issue (4): 164-168.doi: 10.11896/jsjkx.190600171
曹存根1, 胡岚曦1,2, 眭跃飞1,2
CAO Cun-gen1, HU Lan-xi1,2, SUI Yue-fei1,2
摘要: 在L3-值命题逻辑中,对应于矢列式推导的Gentzen推理系统G是单调的,而对应于余矢列式推导的Gentzen推理系统G-是非单调的。基于G和G-,文中给出了一个R-演算S,使得任意的R-转换Δ|A⇒Δ,C是有效的当且仅当它在S中可证。因此, S在限制A进入Δ时是单调的,而在将A添加到Δ中时是非单调的。
中图分类号:
[1]LI W.Mathematical logic,foundations for information science[M]//Progress in Computer Science and Applied Logic.Birkhauser,2010. [2]TAKEUTI G.Proof theory(Second Edition)[M].Mineola,New York:Dover Publications,2013. [3]CAO C G,SUI Y F,WANG Y.The nonmonotonic propositional logics [J].Artificial Intelligence Research,2016,5:111-120. [4]REITER R.A logic for default reasoning [J].Artificial Intelligence,1980,13:81-132. [5]ALCHOURRÒN C E,GARDENFORS P,MAKINSON D.On the logic of theory change:partial meet contraction and revision functions [J].The Journal of Symbolic Logic,1985,50:510-530. [6]BOCHMAN A.A foundational theory of belief and belief change[J].Artificial Intelligence,1999,108:309-352. [7]FERMÉ E,HANSSON S O.AGM 25 years:twenty-five years of research in belief change [J].Journal of Philosophical Logic,2011,40(2):295-331. [8]LI W.R-calculus:An inference system for belief revision [J].The Computer Journal,2007,50:378-390. [9]DARWICHE A,PEARL J.On the logic of iterated belief revision [J].Artificial Intelligence,1997,89:1-29. [10]FRIEDMAN N,HALPERN J Y.Belief revision:a critique[C]//Principles of Knowledge Representation and Reasoning:proceedings of the 5th International Conference.1996:421-431. [11]AVRON A.Natural 3-valued logics-characterization and prooftheory [J].Journal of Symbolic Logic,1991,56:276-294. [12]GOTTWALD S.A treatise on many-valued logics [M].Research Studies Press,2001. [13]AVRON A.On the expressive power of three-valued and four-valued languages [J].Journal of Logic and Computation,1999,9:977-994. [14]HANSSON S O.Theory contraction and base contraction unified [J].The Journal of Symbolic Logic,1993,58:602-625. [15]HERZIG A,RIFI O.Propositional belief base update and minimal change [J].Artificial intelligence,1999,115:107-138. [16]PYNKO A P.Implicational classes of demorg-an lattices [J].Discrete Mathematics,1999,205:171-181. [17]SATOH K.Nonmonotonic reasoning by minimal belief revision [C]//Proceedings of the international conference on FifthGe-neration Computer Systems.Tokyo,1988:455-462. [18]URQUHART A.Basic many-valued logic(2nd Edition)[M]//Handbook of Philosophical Logic.Kluwer Academic Publishers,2001:249-295. |
[1] | 栾尚敏 戴国忠. 信念修正的实现方法 计算机科学, 2004, 31(12): 100-102. |
[2] | 孙召春 高阳 贾松茂 陈世福. 多Agent信念修正研究 计算机科学, 2003, 30(6): 105-107. |
[3] | 栾尚敏 李未. 信念修正的各种方法之比较 计算机科学, 1999, 26(7): 8-13. |
|