计算机科学 ›› 2020, Vol. 47 ›› Issue (5): 166-171.doi: 10.11896/jsjkx.190400062
所属专题: 医学图像
李天培, 陈黎
LI Tian-pei, CHEN Li
摘要: 眼底视网膜血管的分割提取对于糖尿病、视网膜病、青光眼等眼科疾病的诊断具有重要的意义。针对视网膜血管图像中的血管难以提取、数据量较少等问题,文中提出了一种结合注意力模块和编码-解码器结构的视网膜血管分割方法。首先对编码-解码器卷积神经网络的每个卷积层添加空间和通道注意力模块,加强模型对图像特征的空间信息和通道信息(如血管的大小、形态和连通性等特点)的利用,从而改善视网膜血管的分割效果。其中,空间注意力模块关注于血管的拓扑结构特性,而通道注意力模块关注于血管像素点的正确分类。此外,在训练过程中采用Dice损失函数解决了视网膜血管图像正负样本不均衡的问题。在3个公开的眼底图像数据库DRIVE,STARE和CHASE_DB1上进行了实验,实验数据表明,所提算法的准确率、灵敏度、特异性和AUC值均优于已有的视网膜血管分割方法,其AUC值分别为0.9889,0.9812和0.9831。实验证明,所提算法能够有效提取健康视网膜图像和病变视网膜图像中的血管网络,能够较好地分割细小血管。
中图分类号:
[1]CHENG E,DU L,WU Y,et al.Discriminative vessel segmentation in retinal images by fusing context-aware hybrid features[J].Machine Vision and Applications,2014,25(7):1779-1792. [2]KANG W,WU Q.Contactless palm vein recognition using amutual foreground-based local binary pattern[J].IEEE Tran-sactions on Information Forensics and Security,2014,9(11):1974-1985. [3]WANG X H,XUE Q S.Optical design of portable non-mydriatic fundus camera with large field of view[J].Acta Optica Sinica,2017,37(9):0922001. [4]RAMESH N,YOO J H,SETHI I K.Thresholding based on histogram approximation[J].IEE Proceedings-Vision,Image and Signal Processing,1995,142(5):271-279. [5]BOYKOV Y Y,JOLLY M P.Interactive graph cuts for optimal boundary & region segmentation of objects in ND images[C]//Proceedings Eighth IEEE International Conference on Computer vision(ICCV 2001).IEEE,2001:105-112. [6]SOARES J V B,LEANDRO J J G,CESAR R M,et al.Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification[J].IEEE Transactions on Medical Imaging,2006,25(9):1214-1222. [7]WANG S,YIN Y,CAO G,et al.Hierarchical retinal blood vessel segmentation based on feature and ensemble learning[J].Neurocomputing,2015,149:708-717. [8]MAJI D,SANTARA A,GHOSH S,et al.Deep neural network and random forest hybrid architecture for learning to detect retinal vessels in fundus images[C]//2015 37th Nnnual International Conference of the IEEE Engineering in Medicine and Bio-logy Society (EMBC).IEEE,2015:3029-3032. [9]FU H,XU Y,WONG D W K,et al.Retinal vessel segmentation via deep learning network and fully-connected conditional random fields[C]//2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI).IEEE,2016:698-701. [10]XIAO X,LIAN S,LUO Z,et al.Weighted Res-UNet for High-Quality Retina Vessel Segmentation[C]//2018 9th International Conference on Information Technology in Medicine and Education (ITME).IEEE,2018:327-331. [11]RONNEBERGER O,FISCHER P,BROX T.U-net:Convolu-tional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-assisted Intervention.Cham:Springer,2015:234-241. [12]BADRINARAYANAN V,KENDALL A,CIPOLLA R.Segnet:A deep convolutional encoder-decoder architecture for image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(12):2481-2495. [13]LAROCHELLE H,HINTON G E.Learning to combine foveal glimpses with a third-order Boltzmann machine[C]//Advances in Neural Information Processing Systems.2010:1243-1251. [14]WANG F,JIANG M,QIAN C,et al.Residual attention network for image classification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:3156-3164. [15]HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:7132-7141. [16]ZHAO H,SHI J,QI X,et al.Pyramid scene parsing network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:2881-2890. [17]PENG C,ZHANG X,YU G,et al.Large Kernel Matters--Improve Semantic Segmentation by Global Convolutional Network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:4353-4361. [18]MILLETARI F,NAVAB N,AHMADI S A.V-net:Fully convolutional neural networks for volumetric medical image segmentation[C]//2016 Fourth International Conference on 3D Vision (3DV).IEEE,2016:565-571. [19]STAAL J,ABRÁMOFF M D,NIEMEIJER M,et al.Ridge-based vessel segmentation in color images of the retina[J].IEEE Transactions on Medical Imaging,2004,23(4):501-509. [20]HOOVER A,KOUZNETSOVA V,GOLDBAUM M.Locating blood vessels in retinal images by piece-wise threshold probing of a matched filter response[C]//Proceedings of the AMIA Symposium.American Medical Informatics Association,1998:931. [21]FRAZ M M,REMAGNINO P,HOPPE A,et al.An ensemble classification-based approach applied to retinal blood vessel segmentation[J].IEEE Transactions on Biomedical Engineering,2012,59(9):2538-2548. [22]GLOROT X,BENGIO Y.Understanding the difficulty of training deep feedforward neural networks[C]//Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics.2010:249-256. [23]AZZOPARDI G,STRISCIUGLIO N,VENTO M,et al.Trainable COSFIRE filters for vessel delineation with application to retinal images[J].Medical Image Analysis,2015,19(1):46-57. [24]ROYCHOWDHURY S,KOOZEKANANI D D,PARHI K K.Iterative vessel segmentation of fundus images[J].IEEE Transactions on Biomedical Engineering,2015,62(7):1738-1749. [25]ZHAO Y,RADA L,CHEN K,et al.Automated vessel segmentation using infinite perimeter active contour model with hybrid region information with application to retinal images[J].IEEE Transactions on Medical Imaging,2015,34(9):1797-1807. [26]FU H,XU Y,LIN S,et al.Deepvessel:Retinal vessel segmentation via deep learning and conditional random field[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention.Cham:Springer,2016:132-139. |
[1] | 杨玥, 冯涛, 梁虹, 杨扬. 融合交叉注意力机制的图像任意风格迁移 Image Arbitrary Style Transfer via Criss-cross Attention 计算机科学, 2022, 49(6A): 345-352. https://doi.org/10.11896/jsjkx.210700236 |
[2] | 沈超, 何希平. 基于纹理特征增强和轻量级网络的人脸防伪算法 Face Anti-spoofing Algorithm Based on Texture Feature Enhancement and Light Neural Network 计算机科学, 2022, 49(6A): 390-396. https://doi.org/10.11896/jsjkx.210600217 |
[3] | 晏旭, 马帅, 曾凤娇, 郭正华, 伍俊龙, 杨平, 许冰. 基于编码-解码器架构的光场深度估计方法 Light Field Depth Estimation Method Based on Encoder-decoder Architecture 计算机科学, 2021, 48(10): 212-219. https://doi.org/10.11896/jsjkx.200900005 |
[4] | 吕泽宇李纪旋陈如剑陈东明. 电商平台用户再购物行为的预测研究 Research on Prediction of Re-shopping Behavior of E-commerce Customers 计算机科学, 2020, 47(6A): 424-428. https://doi.org/10.11896/JsJkx.190900018 |
[5] | 尚骏远, 杨乐涵, 何琨. 基于特征可视化分析深度神经网络的内部表征 Analyzing Latent Representation of Deep Neural Networks Based on Feature Visualization 计算机科学, 2020, 47(5): 190-197. https://doi.org/10.11896/jsjkx.190700128 |
|