计算机科学 ›› 2014, Vol. 41 ›› Issue (5): 263-265.doi: 10.11896/j.issn.1002-137X.2014.05.055
郭小芳,李锋,宋晓宁,刘庆华
GUO Xiao-fang,LI Feng,SONG Xiao-ning and LIU Qing-hua
摘要: 为了提高时间序列的异常检测算法的精度,根据主成分的累积贡献率选择序列及其主成分,在k_近邻局部离群点检测算法中采用加权Euclid范数距离作为k_近邻距离,从而实现对多变量时间序列的异常检测。为了验证算法的有效性,对测试数据进行了异常检测。实验结果表明,算法的精度和查全率比传统方法具有更大的优越性。
[1] Tsai C Y,Chuang C-C.Developing a feature weight self-adjustment mechanism for a K-means clustering algorithm[J].Computational Statistics & Data Analysis,2008,52(10):4658-4672 [2] Kumpulainen P,Kimmo.Local anomaly detection for mobilenetwork monitoring[J].Information Sciences,2008,178(20):3840-3859 [3] Jiang F,Yuan J,Tsaftaris S,et al.Anomalous video event detection using spatiotemporal context[J].Computer Vision and Ima-ge Understanding,2011,115(3):323-333 [4] 肖辉.时间序列的相似性查询与异常检测[D].上海:复旦大学,2005:33-40 [5] Cong Y,Yuan J,Liu J.Sparse reconstruction cost for abnormal event detection[C]∥IEEE Conference on Computer Vision and Pattern Recognition.2011:3449-3456 [6] Baragona R,Battaglia F.Outlier detection in multivariate time series by Independent Component Analysis [J].Neural Computation,2007,19(1):1962-1984 [7] Yamanlsh K,Takeuch J.A unifying framework to detecting outliers and change-points from nonstationary data [C]∥Procee-dings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD2002).New York:ACM Press,2002:676-681 [8] 林果园,郭山清.基于动态行为和特征模式的异常检测模型[J].计算机学报,2006,9(9):1553-1559 [9] 张力生,杨美洁,雷大江.时间序列重要点分割的异常子序列检测[J].计算机科学,2012,9(5):183-186 [10] 郭小芳,张绛丽.基于加权范数的多维时间序列相似性主成分分析[J].江苏科技大学学报:自然科学版,2011,25(5):466-469 [11] Agyemang M,Ezeife C I.LSC-Mine:Algorithm for Mining Local Outliers[C]∥Proceedings of the 15th Information Resource Management Association(IRMA) Intemational Conferenee.New Orleans,2004,1:5-8 [12] Yang K,Shahabi C.An efficient k nearest neighbor search for multivariate time series [J].Information Computation,2007,5(1):65-98 |
No related articles found! |
|