计算机科学 ›› 2020, Vol. 47 ›› Issue (11): 205-211.doi: 10.11896/jsjkx.190900078
黄同愿, 杨雪姣, 向国徽, 陈辽
HUANG Tong-yuang, YANG Xue-jiao, XIANG Guo-hui, CHEN Liao
摘要: 自动驾驶场景下,为了提高远距离行人的检测精度和测距精度,结合深度学习的目标检测,提出了一种行人测距算法。首先,提出了冗余切图法,结合YOLOV3模型对小目标行人进行检测,再通过改进的边界框筛选算法对所有子图的候选框进行多次筛选,最终得到行人检测框。然后,对传统的相似三角形测距算法进行分析,提出了一种包含pitch和yaw的改进相似三角形测距算法。最后,根据行人检测结果实时测量行人距离当前车辆的横向距离和纵向距离。实验结果表明,在BDD 100K验证集上,所提出的冗余切图法检测模型比原YOLOV3模型的mAP提高了6%,比小目标行人的mAP提高了3%,具有更好的检测鲁棒性;在车载摄像头采集的测距测试集上,冗余切图法和改进的测距算法的结合使测距精度在对比实验结果上改善了6.542%,不仅实现了远距离测距,而且具有更高的测距准确性。
中图分类号:
[1] GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Columbus,Ohio:IEEE,2014:580-587. [2] GIRSHICK R.Fast r-cnn[C]//Proceedings of the IEEE International Conference on Computer Vision.Santiago,Chile:ICCV,2015:1440-1448. [3] REN S,HE K,GIRSHICK R,et al.Faster r-cnn:Towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems.Montréal,Canada:NIPS,2015:91-99. [4] HE K,GKIOXARI G,DOLLÁR P,et al.Mask r-cnn[C]//Proceedings of the IEEE International Conference on Computer Vision.Venice,Italy:ICCV,2017:2961-2969. [5] LIU W,ANGUELOV D,ERHAN D,et al.SSD:Single shotmulti-box detector[C]//EuropeanConference on Computer Vision.Cham:Springer,2016:21-37. [6] REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:Unified,real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas,USA:IEEE,2016:779-788. [7] REDMON J,FARHADI A.YOLO9000:better,faster,stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Honolulu,Hawaii:IEEE,2017:7263-7271. [8] REDMON J,FARHADI A.Yolov3:An incremental improve-ment [EB/OL].[2018-04-08].https://arxiv.org/abs/1804.02767. [9] SEO D,PARK H,JO K,et al.Omnidirectional stereo visionbased vehicle detection and distance measurement for driver assistance system[C]//IECON 2013-39th Annual Conference of the IEEE Industrial Electronics Society.Vienna,Austria:IEEE,2013:5507-5511. [10] LI X.Vehicle front obstacle measurement based on monocularvision [D].Xi'an:Xi'an University of Architecture and Technology,2013. [11] MILKHALSKY M,SITTE J.Active motion vision for distanceestimation in autonomous mobile robots[C]//IEEE Conference on Robotics,Automation and Mechatronics.Bangkok,Thailand:IEEE,2004:1060-1065. [12] LI T,LAI Y N,FANG T Y,et al.Research of Driving Sight Distance Detection Algorithm Based on Procurement of Special Points[J].Journal of Chongqing University of Technology(Na-tural Science),2019,33(7):37-43. [13] YONG C W.An Improved DS Evidence Combination MethodBased on K-L Distance[J].Telecommunication Engineering,2011,5(11):27-30. [14] WAGN Z G,ZHAO H L,WANG X.Fuzzy Ranging Method Based on Image Recognition[J].Journal of Chongqing University of Technology(Natural Science),2020,34(1):58-63. [15] ZHOU Z,XU X B,WEN C L,et al.Optimization method forconflict evidence fusion [J].Journal of Automation,2012,38(6):976-985. [16] WEI X.Feature fusion method based on 2DPCA and its applica-tion [J].Computer Engineering and Applications,2008,44(5):70-72. [17] STEIN G P,MANO O,SHASHUA A.Vision-based ACC with a single camera:Bounds on range and range rate accuracy[C]//Intelligent Vehicles Symposium.Columbus,OH,USA:IEEE,2003:120-125. [18] LIUC H,SHUAI K,YANG W R.Design of Ranging System for Embedded Vision[J].Journal of Wuhan University of Technology,2015,37(4):65-68. [19] ZHANG J P,LOU P H,QIAN X M,et al.Research on visualguidance AGV prec-ise positioning technology for multiwindow real-time ranging [J].Journal of Instrumentation,2016,37(6):81-92. [20] ZHONGD X,YANG Y,LIU R L,et al.Research and application of assembly robot based on monocular vision [J].Journal of Xi'an Jiaotong University,2018,52 (5):86-92. [21] RAZA M,CHEN Z,REHMAN S U,et al.Framework for estimating distance and dimension at-tributes of pedestrians in real-time environments using monocular camera[J].Neurocomputing,2018,275:533-545. [22] ADAMSHUK R,CARVALHO D,NEME J H Z,et al.On the applicability of inverse perspective mapping for the forward distance estimation based on the HSVcolormap[C]//2017 IEEE International Conference on Industrial Technology (ICIT).Toronto,Canada:IEEE,2017:1036-1041. [23] ZHANG Q,ZHOU P,XUE M.A method for measuring object distance on the plane based on monocular vision[C]//Selected Papers of the Chinese Society for Optical Engineering Conferences.San Francisco,USA:SPIE,2017,10255:102554F. [24] LIN T Y,DOLLÁR P,GIRSHICK R,et al.Feature pyramidnetworks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Honolulu,Hawaii:IEEE,2017:2117-2125. [25] NEUBECKA,GOOL L J V.Efficient Non-Maximum Suppression[C]//18th International Conference on Pattern Recognition (ICPR 2006).Hong Kong,China:IEEE Computer Society,2006:850-855. [26] LIU Z,LU D,QIAN W,et al.A new method for increasing accuracy of distance measurement based on single visual camera[J].Optical and Quantum Electronics,2019,51(3):452-463. [27] CAO Y,FENG Y,ZHAOL S,et al.The influence of camera attitude installation error on the accuracy of monocular vision positioning[J].Sensors and Microsystems,2012,31(12):23-26. [28] ZHANG Z.A Flexible New Technique for Camera Calibration[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(11):1330-1334. [29] SILVA R A,NEME J H Z,MARGRAF E,et al.Analisis of a distance measurement system based on monocular camera[C]//XXXVIII Ibero Latin American Congress on Computational Methods in Engineering.Florianópolis,Santa Catarina,Brazil:CMEF,2017:312-326. |
[1] | 郝强, 李杰, 张曼, 王路. 基于改进YOLOv3的空间非合作目标部件识别算法 Spatial Non-cooperative Target Components Recognition Algorithm Based on Improved YOLOv3 计算机科学, 2022, 49(6A): 358-362. https://doi.org/10.11896/jsjkx.210700048 |
[2] | 袁磊, 刘紫燕, 朱明成, 马珊珊, 陈霖周廷. 融合改进密集连接和分布排序损失的遥感图像检测 Improved YOLOv3 Remote Sensing Target Detection Based on Improved Dense Connection and Distributional Ranking Loss 计算机科学, 2021, 48(9): 168-173. https://doi.org/10.11896/jsjkx.200800001 |
[3] | 余晗青, 杨贞, 殷志坚. 基于区域激活策略的Tiny YOLOv3目标检测算法 Tiny YOLOv3 Target Detection Algorithm Based on Region Activation Strategy 计算机科学, 2021, 48(6A): 118-121. https://doi.org/10.11896/jsjkx.200700122 |
[4] | 龚航, 刘培顺. 夜间行驶车辆远光灯检测方法 Detection Method of High Beam in Night Driving Vehicle 计算机科学, 2021, 48(12): 256-263. https://doi.org/10.11896/jsjkx.200700026 |
[5] | 刘彦, 秦品乐, 曾建朝. 基于YOLOv3与分层数据关联的多目标跟踪算法 Multi-object Tracking Algorithm Based on YOLOv3 and Hierarchical Data Association 计算机科学, 2021, 48(11A): 370-375. https://doi.org/10.11896/jsjkx.201000115 |
[6] | 金雨芳, 吴祥, 董辉, 俞立, 张文安. 基于改进YOLO v4的安全帽佩戴检测算法 Improved YOLO v4 Algorithm for Safety Helmet Wearing Detection 计算机科学, 2021, 48(11): 268-275. https://doi.org/10.11896/jsjkx.200900098 |
[7] | 罗月童, 江佩峰, 段昶, 周波. 面向小目标检测的改进RetinaNet模型及其应用 Small Object Detection Oriented Improved-RetinaNet Model and Its Application 计算机科学, 2021, 48(10): 233-238. https://doi.org/10.11896/jsjkx.200900172 |
[8] | 徐守坤, 倪楚涵, 吉晨晨, 李宁. 基于YOLOv3的施工场景安全帽佩戴的图像描述 Image Caption of Safety Helmets Wearing in Construction Scene Based on YOLOv3 计算机科学, 2020, 47(8): 233-240. https://doi.org/10.11896/jsjkx.190600109 |
[9] | 刘舒康, 唐鹏, 金炜东. 基于智能数据增强和改进YOLOv3算法的接触网吊弦及支架检测研究 Study on Catenary Dropper and Support Detection Based on Intelligent Data Augmentation and Improved YOLOv3 计算机科学, 2020, 47(11A): 178-182. https://doi.org/10.11896/jsjkx.200200053 |
[10] | 焦姣,谢永杰,张华良,张颂. 基于小波滤波背景预测的红外弱小目标检测方法 Infrared Dim and Small Target Detection Based on Background Prediction by Wavelet Filter 计算机科学, 2016, 43(2): 60-63. https://doi.org/10.11896/j.issn.1002-137X.2016.02.013 |
|