计算机科学 ›› 2020, Vol. 47 ›› Issue (11): 205-211.doi: 10.11896/jsjkx.190900078

• 计算机图形学&多媒体 • 上一篇    下一篇

基于单目视觉的小目标行人检测与测距研究

黄同愿, 杨雪姣, 向国徽, 陈辽   

  1. 重庆理工大学两江人工智能学院 重庆 401135
  • 收稿日期:2019-09-11 修回日期:2020-02-17 出版日期:2020-11-15 发布日期:2020-11-05
  • 通讯作者: 杨雪姣(1064699383@qq.com)
  • 作者简介:tyroneh@cqut.edu.cn
  • 基金资助:
    国家自然科学基金(61702063,41804112);重庆理工大学研究生创新基金项目(ycx20192063)

Study on Small Target Pedestrian Detection and Ranging Based on Monocular Vision

HUANG Tong-yuang, YANG Xue-jiao, XIANG Guo-hui, CHEN Liao   

  1. School of Artificial Intelligence,Chongqing University of Technology,Chongqing 401135,China
  • Received:2019-09-11 Revised:2020-02-17 Online:2020-11-15 Published:2020-11-05
  • About author:HUANG Tong-yuan,born in 1975,associate professor,postgraduate supervisor.His main research interests include machine learning,intelligent information processing,image processing and machine vision.
    YANG Xue-jiao,born in 1991,postgra-duate,is a member of China Computer Federation.Her main research interests include computer vision,target detection and monocular ranging.
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (61702063,41804112) and Postgraduate Innovation Fund Project of Chongqing University of Technology (ycx20192063).

摘要: 自动驾驶场景下,为了提高远距离行人的检测精度和测距精度,结合深度学习的目标检测,提出了一种行人测距算法。首先,提出了冗余切图法,结合YOLOV3模型对小目标行人进行检测,再通过改进的边界框筛选算法对所有子图的候选框进行多次筛选,最终得到行人检测框。然后,对传统的相似三角形测距算法进行分析,提出了一种包含pitch和yaw的改进相似三角形测距算法。最后,根据行人检测结果实时测量行人距离当前车辆的横向距离和纵向距离。实验结果表明,在BDD 100K验证集上,所提出的冗余切图法检测模型比原YOLOV3模型的mAP提高了6%,比小目标行人的mAP提高了3%,具有更好的检测鲁棒性;在车载摄像头采集的测距测试集上,冗余切图法和改进的测距算法的结合使测距精度在对比实验结果上改善了6.542%,不仅实现了远距离测距,而且具有更高的测距准确性。

关键词: YOLOV3, 单目测距, 冗余切图法, 相似三角形测距, 小目标检测

Abstract: In order to improve the detection and ranging accuracy of long-distance pedestrians under automatic driving scenario,a pedestrian ranging algorithm is proposed based on the target detection of deep learning.Firstly,a redundant graph cutting method is proposed to detect the small target pedestrian by combining with the YOLOV3 model.And then the candidate bounds of all subgraphs are screened many times by the improved bounding box screening algorithm,and finally the pedestrian detection box is obtained.By analyzing the traditional similar triangle ranging algorithm,an improved similar triangle ranging algorithm including pitch and yaw is proposed.Finally,the transverse and longitudinal distances between pedestrian and the current vehicle are mea-sured in real time according to the pedestrian detection results.The experimental results show that,on the validation set BDD 100 K,the mAP of the proposed redundant graph cutting detection model is 6% higher than that of the original YOLOV3 model,and the mAP of small target pedestrian is improved by 3%,and has a better robustness.On the ranging test set collected by on-board camera,the combination of the redundant graph cutting method and the improved ranging algorithm improves the range measurement accuracy by 6.542% compared with the experimental results,which not only realizes long-distance range measurement,but also has higher range measurement accuracy.

Key words: Monocular ranging, Redundant graph cutting method, Similar triangles ranging, Small target detection, YOLOV3

中图分类号: 

  • TP391
[1] GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Columbus,Ohio:IEEE,2014:580-587.
[2] GIRSHICK R.Fast r-cnn[C]//Proceedings of the IEEE International Conference on Computer Vision.Santiago,Chile:ICCV,2015:1440-1448.
[3] REN S,HE K,GIRSHICK R,et al.Faster r-cnn:Towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems.Montréal,Canada:NIPS,2015:91-99.
[4] HE K,GKIOXARI G,DOLLÁR P,et al.Mask r-cnn[C]//Proceedings of the IEEE International Conference on Computer Vision.Venice,Italy:ICCV,2017:2961-2969.
[5] LIU W,ANGUELOV D,ERHAN D,et al.SSD:Single shotmulti-box detector[C]//EuropeanConference on Computer Vision.Cham:Springer,2016:21-37.
[6] REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:Unified,real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas,USA:IEEE,2016:779-788.
[7] REDMON J,FARHADI A.YOLO9000:better,faster,stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Honolulu,Hawaii:IEEE,2017:7263-7271.
[8] REDMON J,FARHADI A.Yolov3:An incremental improve-ment [EB/OL].[2018-04-08].https://arxiv.org/abs/1804.02767.
[9] SEO D,PARK H,JO K,et al.Omnidirectional stereo visionbased vehicle detection and distance measurement for driver assistance system[C]//IECON 2013-39th Annual Conference of the IEEE Industrial Electronics Society.Vienna,Austria:IEEE,2013:5507-5511.
[10] LI X.Vehicle front obstacle measurement based on monocularvision [D].Xi'an:Xi'an University of Architecture and Technology,2013.
[11] MILKHALSKY M,SITTE J.Active motion vision for distanceestimation in autonomous mobile robots[C]//IEEE Conference on Robotics,Automation and Mechatronics.Bangkok,Thailand:IEEE,2004:1060-1065.
[12] LI T,LAI Y N,FANG T Y,et al.Research of Driving Sight Distance Detection Algorithm Based on Procurement of Special Points[J].Journal of Chongqing University of Technology(Na-tural Science),2019,33(7):37-43.
[13] YONG C W.An Improved DS Evidence Combination MethodBased on K-L Distance[J].Telecommunication Engineering,2011,5(11):27-30.
[14] WAGN Z G,ZHAO H L,WANG X.Fuzzy Ranging Method Based on Image Recognition[J].Journal of Chongqing University of Technology(Natural Science),2020,34(1):58-63.
[15] ZHOU Z,XU X B,WEN C L,et al.Optimization method forconflict evidence fusion [J].Journal of Automation,2012,38(6):976-985.
[16] WEI X.Feature fusion method based on 2DPCA and its applica-tion [J].Computer Engineering and Applications,2008,44(5):70-72.
[17] STEIN G P,MANO O,SHASHUA A.Vision-based ACC with a single camera:Bounds on range and range rate accuracy[C]//Intelligent Vehicles Symposium.Columbus,OH,USA:IEEE,2003:120-125.
[18] LIUC H,SHUAI K,YANG W R.Design of Ranging System for Embedded Vision[J].Journal of Wuhan University of Technology,2015,37(4):65-68.
[19] ZHANG J P,LOU P H,QIAN X M,et al.Research on visualguidance AGV prec-ise positioning technology for multiwindow real-time ranging [J].Journal of Instrumentation,2016,37(6):81-92.
[20] ZHONGD X,YANG Y,LIU R L,et al.Research and application of assembly robot based on monocular vision [J].Journal of Xi'an Jiaotong University,2018,52 (5):86-92.
[21] RAZA M,CHEN Z,REHMAN S U,et al.Framework for estimating distance and dimension at-tributes of pedestrians in real-time environments using monocular camera[J].Neurocomputing,2018,275:533-545.
[22] ADAMSHUK R,CARVALHO D,NEME J H Z,et al.On the applicability of inverse perspective mapping for the forward distance estimation based on the HSVcolormap[C]//2017 IEEE International Conference on Industrial Technology (ICIT).Toronto,Canada:IEEE,2017:1036-1041.
[23] ZHANG Q,ZHOU P,XUE M.A method for measuring object distance on the plane based on monocular vision[C]//Selected Papers of the Chinese Society for Optical Engineering Conferences.San Francisco,USA:SPIE,2017,10255:102554F.
[24] LIN T Y,DOLLÁR P,GIRSHICK R,et al.Feature pyramidnetworks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Honolulu,Hawaii:IEEE,2017:2117-2125.
[25] NEUBECKA,GOOL L J V.Efficient Non-Maximum Suppression[C]//18th International Conference on Pattern Recognition (ICPR 2006).Hong Kong,China:IEEE Computer Society,2006:850-855.
[26] LIU Z,LU D,QIAN W,et al.A new method for increasing accuracy of distance measurement based on single visual camera[J].Optical and Quantum Electronics,2019,51(3):452-463.
[27] CAO Y,FENG Y,ZHAOL S,et al.The influence of camera attitude installation error on the accuracy of monocular vision positioning[J].Sensors and Microsystems,2012,31(12):23-26.
[28] ZHANG Z.A Flexible New Technique for Camera Calibration[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(11):1330-1334.
[29] SILVA R A,NEME J H Z,MARGRAF E,et al.Analisis of a distance measurement system based on monocular camera[C]//XXXVIII Ibero Latin American Congress on Computational Methods in Engineering.Florianópolis,Santa Catarina,Brazil:CMEF,2017:312-326.
[1] 郝强, 李杰, 张曼, 王路.
基于改进YOLOv3的空间非合作目标部件识别算法
Spatial Non-cooperative Target Components Recognition Algorithm Based on Improved YOLOv3
计算机科学, 2022, 49(6A): 358-362. https://doi.org/10.11896/jsjkx.210700048
[2] 袁磊, 刘紫燕, 朱明成, 马珊珊, 陈霖周廷.
融合改进密集连接和分布排序损失的遥感图像检测
Improved YOLOv3 Remote Sensing Target Detection Based on Improved Dense Connection and Distributional Ranking Loss
计算机科学, 2021, 48(9): 168-173. https://doi.org/10.11896/jsjkx.200800001
[3] 余晗青, 杨贞, 殷志坚.
基于区域激活策略的Tiny YOLOv3目标检测算法
Tiny YOLOv3 Target Detection Algorithm Based on Region Activation Strategy
计算机科学, 2021, 48(6A): 118-121. https://doi.org/10.11896/jsjkx.200700122
[4] 龚航, 刘培顺.
夜间行驶车辆远光灯检测方法
Detection Method of High Beam in Night Driving Vehicle
计算机科学, 2021, 48(12): 256-263. https://doi.org/10.11896/jsjkx.200700026
[5] 刘彦, 秦品乐, 曾建朝.
基于YOLOv3与分层数据关联的多目标跟踪算法
Multi-object Tracking Algorithm Based on YOLOv3 and Hierarchical Data Association
计算机科学, 2021, 48(11A): 370-375. https://doi.org/10.11896/jsjkx.201000115
[6] 金雨芳, 吴祥, 董辉, 俞立, 张文安.
基于改进YOLO v4的安全帽佩戴检测算法
Improved YOLO v4 Algorithm for Safety Helmet Wearing Detection
计算机科学, 2021, 48(11): 268-275. https://doi.org/10.11896/jsjkx.200900098
[7] 罗月童, 江佩峰, 段昶, 周波.
面向小目标检测的改进RetinaNet模型及其应用
Small Object Detection Oriented Improved-RetinaNet Model and Its Application
计算机科学, 2021, 48(10): 233-238. https://doi.org/10.11896/jsjkx.200900172
[8] 徐守坤, 倪楚涵, 吉晨晨, 李宁.
基于YOLOv3的施工场景安全帽佩戴的图像描述
Image Caption of Safety Helmets Wearing in Construction Scene Based on YOLOv3
计算机科学, 2020, 47(8): 233-240. https://doi.org/10.11896/jsjkx.190600109
[9] 刘舒康, 唐鹏, 金炜东.
基于智能数据增强和改进YOLOv3算法的接触网吊弦及支架检测研究
Study on Catenary Dropper and Support Detection Based on Intelligent Data Augmentation and Improved YOLOv3
计算机科学, 2020, 47(11A): 178-182. https://doi.org/10.11896/jsjkx.200200053
[10] 焦姣,谢永杰,张华良,张颂.
基于小波滤波背景预测的红外弱小目标检测方法
Infrared Dim and Small Target Detection Based on Background Prediction by Wavelet Filter
计算机科学, 2016, 43(2): 60-63. https://doi.org/10.11896/j.issn.1002-137X.2016.02.013
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!