计算机科学 ›› 2020, Vol. 47 ›› Issue (11A): 188-191.doi: 10.11896/jsjkx.200200058

• 计算机图形学&多媒体 • 上一篇    下一篇

基于块稀疏贝叶斯模型的鬼成像重构算法

吴学林1, 朱荣1,2, 郭迎3   

  1. 1 无锡太湖学院物联网工程学院 江苏 无锡 214000
    2 曲阜师范大学计算机学院 山东 日照 276826
    3 中南大学自动化学院 长沙 410083
  • 出版日期:2020-11-15 发布日期:2020-11-17
  • 通讯作者: 朱荣(zhurongsd@qfnu.edu.cn)
  • 作者简介:16877901@qq.com
  • 基金资助:
    国家自然科学基金(61876407);江苏省物联网应用技术重点建设实验室(19WXWL05,18WXWL01)

Ghost Imaging Reconstruction Algorithm Based on Block Sparse Bayesian Model

WU Xue-lin1, ZHU Rong1,2, GUO Ying3   

  1. 1 School of Internet of Things Engineering,Wuxi Taihu University,Wuxi,Jiangsu 214000,China
    2 School of Computer Science,Qufu Normal University,Rizhao,Shandong 276826,China
    3 School of Automation,Central South University,Changsha 410083,China
  • Online:2020-11-15 Published:2020-11-17
  • About author:WU Xue-lin,born in 1981,postgra-duate.Her main research interests include network security and so on.
    ZHU Rong,born in 1975,Ph.D,asso-ciate professor,is a member of China Computer Federation.Her main research interests include image proces-sing,images reconstruction,machine learning and bioinformatics.
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (61876407) and Jiangsu Key Construction Laboratory of IoT Application Technology(19WXWL05,18WXWL01).

摘要: 传统的相机系统使用物体透射或从物体反向散射的光在胶片或焦平面探测器阵列上形成图像,鬼成像系统则使用分离的光场之间的空间相关性来获得图像而且无需记录图像本身,在遥感、医学和显微成像方面具有巨大的应用潜力。然而传统的鬼成像系统存在大尺寸图像重构存储要求高难以实现的问题。针对此问题,本文提出了一种基于块稀疏贝叶斯模型的鬼成像重构算法。该算法首先将一个大尺寸的目标图像等分成若干个小尺寸图像块,然后再利用贝叶斯学习模型对每一个小图像块进行压缩感知重构求解,最后通过合并每一个小图像块的重构结果,得到最终的大目标重构图像。仿真实验结果显示,基于块稀疏贝叶斯的鬼成像重构算法可以明显提升图像重构速度及重构质量,并且在日常条件下也可以快速有效地重构大尺寸目标图像。

关键词: 鬼成像, 块稀疏贝叶斯模型, 图像重构, 压缩感知

Abstract: Conventional camera systems use light transmitted or backscattered from an object to form an image on a film or focal plane detector array.Ghost imaging systems utilize the spatial correlation between separated light fields to obtain images without recording the images themselves,and have great application potential in remote sensing,medical,and microscopic imaging.A ghost imaging reconstruction algorithm based on block sparse Bayesian model is proposed to improve the problem that large-scale image reconstruction storage is difficult to achieve in traditional ghost imaging systems.This algorithm divides a large-size target image into several small-sized image blocks of the same size.Based on the Bayesian learning model,each image block is subjected to compressed sensing reconstruction.Subsequently,the reconstruction result of each image block is merged,resulting in the final target reconstructed image.The simulation results show that the image quality of the reconstructed image can be improved from the block sparse Bayesian ghost imaging reconstruction algorithm,and the large-size target image can be reconstructed effectively under the traditional computer configuration for practical implementations.

Key words: Block sparse Bayesian model, Compressed sensing, Ghost imaging, Images reconstruction

中图分类号: 

  • TP13
[1] PITTMAN T,SHIH Y,STREKALOV D,et al.Optical imaging by means of two-photon quantum entanglement[J].Physical Review A,1995,52(5):R3429.
[2] BENNINK R S,BENTLEY S J,BOYD R W.“Two-photon” coincidence imaging with a classical source[J].Physical Review Letters,2002,89(11):113601.
[3] GATTI A,BRAMBILLA E,BACHE M,et al.Ghost imagingwith thermal light:comparing entanglement and classicalcorrelation[J].Physical Review Letters,2004,93(9):093602.
[4] SHAPIRO J H.Computational ghost imaging[J].Physical Review A,2008,78(6):061802.
[5] SHAPIRO J H,BOYD R W.The physics of ghost imaging[J].Quantum Information Processing,2012,11(4):949-993.
[6] SCARCELLI G,BERARDI V,SHIH Y.Phase-conjugate mirror via two-photon thermal light imaging[J].Applied Physics Letters,2006,88(6):R3429.
[7] SHIH Y.100% Correlation of Chaotic-thermal Light and Turbulence-Free Imaging[J].Physical Review A,2013,88(2):179-184.
[8] SUN M,LI M,WU L.Nonlocal imaging of a reflective objectusing positive and negative correlations[J].Applied Optics,2015,54(25):7494-7499.
[9] FERRI F,MAGATTI D,LUGIATO L A,et al.DifferentialGhost Imaging[J].Physical Review Letters,2010,104(25):253603.
[10] KATZ O,BROMBERG Y,SILBERBERG Y.Compressive ghost imaging[J].Applied Physics Letters,2009,95(13):131110.
[11] WANG W,HU X,LIU J,et al.Gerchberg-Saxton-like ghost ima-ging[J].Optics Express,2015,23(22):28416-28422.
[12] ZHAO C,GONG W,CHEN M,et al.Ghost imaging lidar via sparsity constraints[J].Applied Physics Letters,2012,101(14):141123.
[13] HU X,SUO J,YUE T,et al.Patch-primitive driven compressive ghost imaging[J].Optics Express,2015,23(9):11092-11104.
[14] KATKOVNIK V,ASTOLA J.Compressive sensing computa-tional ghost imaging[J].Journal of the Optical Society of America a-Optics Image Science and Vision,2012,29(8):1556-1567.
[15] WU H,ZHANG X,GAN J,et al.High-quality correspondence imaging based on sorting and compressive sensing technique[J].Laser Physics Letters,2016,13(11):115205.
[16] WANG W,WANG Y P,LI J,et al.Iterative ghost imaging[J].Optics Letters,2014,39(17):5150-5153.
[17] KATKOVNIK V,ASTOLA J.Compressive sensing computa-tional ghost imaging[J].JOSA A,2012,29(8):1556-1567.
[18] CANDÉS E J,WAKIN M B.An introduction to compressivesampling[J].IEEE Signal Processing Magazine,2008,25(2):21-30.
[19] CANDES E J.The restricted isometry property and its implications for compressed sensing[J].Comptes Rendus Mathematique,2008,346(9-10):589-592.
[20] LV X,BI G,WAN C.The Group Lasso for Stable Recovery of Block-Sparse Signal Representations[J].IEEE Transactions on Signal Processing,2011,59(4):1371-1382.
[21] ELDAR Y C,KUPPINGER P,BOLCSKEI H.Block-Sparse Signals:Uncertainty Relations and Efficient Recovery[J].IEEE Transactions on Signal Processing,2010,58(6):3042-3054.
[22] WIPF D P,RAO B D.Sparse Bayesian learning for basis selection[J].IEEE Transactions on Signal Processing,2004,52(8):2153-2164.
[23] ZHANG Z,RAO B D.Extension of SBL Algorithms for the Recovery of Block Sparse Signals With Intra-Block Correlation[J].IEEE Transactions on Signal Processing,2013,61(8):2009-2015.
[24] BABACAN S D,NAKAJIMA S,DO M N.Bayesian Group-Sparse Modeling and Variational Inference[J].IEEE Transactions on Signal Processing,2014,62(11):2906-2921.
[25] ZHU R,LI G,GUO Y.Compressed-sensing-based gradient reconstruction for ghost imaging[J].International Journal of Theo-retical Physics,2019,58(4):1215-1226.
[1] 蓝章礼, 申德兴, 曹娟, 张玉欣.
一种基图像提取和内容无关图像重构方法研究
Content-independent Method for Basis Image Extraction and Image Reconstruction
计算机科学, 2020, 47(6A): 226-229. https://doi.org/10.11896/JsJkx.200160009
[2] 刘玉红,刘树英,付福祥.
基于卷积神经网络的压缩感知重构算法优化
Optimization of Compressed Sensing Reconstruction Algorithms Based on Convolutional Neural Network
计算机科学, 2020, 47(3): 143-148. https://doi.org/10.11896/jsjkx.190100199
[3] 田伟, 刘浩, 陈根龙, 宫晓蕙.
面向分块压缩感知的交叉子集导引自适应观测
Cross Subset-guided Adaptive Measurement for Block Compressive Sensing
计算机科学, 2020, 47(12): 190-196. https://doi.org/10.11896/jsjkx.200800197
[4] 许锋, 孙洁, 刘世杰.
基于遗传算法的声场重构测量优化方法
Sampling Optimization Method for Acoustic Field Reconstruction Based on Genetic Algorithm
计算机科学, 2020, 47(11): 304-309. https://doi.org/10.11896/jsjkx.200600167
[5] 侯明星,亓慧,黄斌科.
基于分布式压缩感知的无线传感器网络异常数据处理
Data Abnormality Processing in Wireless Sensor Networks Based on Distributed Compressed Sensing
计算机科学, 2020, 47(1): 276-280. https://doi.org/10.11896/jsjkx.180901667
[6] 蒋敏, 孟志青, 沈瑞.
压缩感知问题的目标罚函数交替随机搜索方法
Alternate Random Search Algorithm of Objective Penalty Function for Compressed Sensing Problem
计算机科学, 2019, 46(6A): 133-137.
[7] 宋晓祥, 郭艳, 李宁, 王萌.
基于压缩感知的时间序列缺失数据预测算法
Missing Data Prediction Based on Compressive Sensing in Time Series
计算机科学, 2019, 46(6): 35-40. https://doi.org/10.11896/j.issn.1002-137X.2019.06.004
[8] 李秀琴, 王天荆, 白光伟, 沈航.
基于压缩感知的两阶段多目标定位算法
Two-phase Multi-target Localization Algorithm Based on Compressed Sensing
计算机科学, 2019, 46(5): 50-56. https://doi.org/10.11896/j.issn.1002-137X.2019.05.007
[9] 吴健, 孙保明.
无线传感器网络中基于字典优化的压缩感知定位方法
Dictionary Refinement-based Localization Method Using Compressive Sensing inWireless Sensor Networks
计算机科学, 2019, 46(4): 118-122. https://doi.org/10.11896/j.issn.1002-137X.2019.04.019
[10] 王鹏飞, 张杭.
欠定条件下基于主成分的亚采样信号重构
Sub-sampling Signal Reconstruction Based on Principal Component Under Underdetermined Conditions
计算机科学, 2019, 46(10): 103-108. https://doi.org/10.11896/jsjkx.190700195
[11] 杜秀丽, 胡兴, 陈波, 邱少明.
基于加权非局部相似性的视频压缩感知多假设重构算法
Multi-hypothesis Reconstruction Algorithm of DCVS Based on Weighted Non-local Similarity
计算机科学, 2019, 46(1): 291-296. https://doi.org/10.11896/j.issn.1002-137X.2019.01.045
[12] 衡阳, 陈峰, 徐剑峰, 汤敏.
基于压缩感知的心脏磁共振快速成像的应用现状与发展趋势
Application Status and Development Trends of Cardiac Magnetic Resonance Fast Imaging Based on Compressed Sensing Theory
计算机科学, 2019, 46(1): 36-44. https://doi.org/10.11896/j.issn.1002-137X.2019.01.006
[13] 杨思星, 郭艳, 李宁, 孙保明, 钱鹏.
基于数据融合的压缩感知多目标定位算法
Compressive Sensing Multi-target Localization Algorithm Based on Data Fusion
计算机科学, 2018, 45(9): 161-165. https://doi.org/10.11896/j.issn.1002-137X.2018.09.026
[14] 杜秀丽, 张薇, 顾斌斌, 陈波, 邱少明.
基于灰度共生矩阵的图像自适应分块压缩感知方法
GLCM-based Adaptive Block Compressed Sensing Method for Image
计算机科学, 2018, 45(8): 277-282. https://doi.org/10.11896/j.issn.1002-137X.2018.08.050
[15] 郭艳,杨思星,李宁,孙保明,钱鹏.
非基于测距的压缩感知多测量向量目标定位
Range-free Localization Based on Compressive Sensing Using Multiple Measurement Vectors
计算机科学, 2018, 45(7): 99-103. https://doi.org/10.11896/j.issn.1002-137X.2018.07.016
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!