计算机科学 ›› 2014, Vol. 41 ›› Issue (4): 219-222.

• 人工智能 • 上一篇    下一篇

数据挖掘和动态神经网络在负荷预测中的研究与应用

李晓峰,黄国兴,高巍巍,丁树春   

  1. 北京理工大学计算机科学与技术学院 北京100081;华东师范大学软件学院 上海200062;黑龙江外国语学院信息科学系 哈尔滨150025;黑龙江大学电子工程学院 哈尔滨150080
  • 出版日期:2018-11-14 发布日期:2018-11-14
  • 基金资助:
    本文受国家自然科学基金(61102071),教师科研专项基金(CTF120771)资助

Research and Application of Data Mining and Dynamic Neural Networks in Load Forecasting

LI Xiao-feng,HUANG Guo-xing,GAO Wei-wei and DING Shu-chun   

  • Online:2018-11-14 Published:2018-11-14

摘要: 中长期负荷变化规律与社会经济指标的关系很难用一个准确的数学模型来表达。将数据挖掘技术应用到全社会用电量增长的关联分析中,从2000年以来的社会经济指标中选取多项组成相关因素数据库,对缺失数据进行了补全,使用聚类分析挖掘出与全社会用电量关系密切的若干指标,并对指标中的失真数据进行修正,构建了更加科学的负荷预测模型。通过时间序列的动态神经网络,对负荷预测模型进行了测试和验证,结果表明该预测模型具有很好的收敛性,效果令人满意。

关键词: 年度负荷预测,数据挖掘,数据补全,数据修正,NARX神经网络

Abstract: Dependence of medium and long-term load variation on socio-economic indicators is difficult to express by an accurate mathematical model. This paper applied data mining techniques to the association analysis of the total electricity consumption growth.Multiple indicators were selected from the socio-economic indicators since 2000to compose relevant factors database,and the missing data were completed.Several indicators closely related to total electricity consumption were mined using cluster analysis,and the distortion data were corrected,thus a more scientific load forecasting model was constructed. Through time series of dynamic neural network,the load forecasting model was tested and validated.The results show that the prediction model has good convergence and satisfactory effect.

Key words: Annual load forecast,Data mining,Data completion,Data correction,NARX neural network

[1] 康重庆,夏清,张伯明.电力系统负荷预测研究综述与发展方向的探讨[J].电力系统自动化,2004,28(17):1-11
[2] 李智勇,陈志刚,徐政,等.中国全社会用电量增长主导因素辨识[J].电力系统自动化,2010,4(23):30-35
[3] 张石,张瑞友,汪定伟.基于DPCA-BP神经网络的中长期电力负荷预测方法[J].东北大学学报:自然科学版,2010,31(4):483-485
[4] 刘瑾,杨海马,陈抱雪,等.神经网络在电力负荷预测中的应用[J].自动化仪表,2012,33(9):21-24
[5] 毛李帆.中长期负荷预测的异常数据辨识与缺失数据处理[J].电网技术,2010,4(7):148-152
[6] 程玉桂,黎明,林明玉.基于遗传算法和BP神经网络的城区中长期电力负荷预测与分析[J].计算机应用,2010,0(1):224-226
[7] Shiu A.LAM P L.Electricity consumption and economic growth in China[J].Energy Policy,2004,2(1):47-54
[8] Cai L,Ma S Y,Cai H T,et al.Prediction of SYM-H index by NARX neural network from IMF and solar wind data[J].Sci China Ser E-Tech Sci,2009,52(10):2877-2885
[9] 李艳红,雷金辉.电力负荷时间序列预测的应用与研究[J].科学技术与工程,2011,11(4):860-864
[10] 代小红,王光利.L-M优化BP算法在短期负荷预测中的应用[J].计算机科学,2011,8(7):265-267

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!