计算机科学 ›› 2021, Vol. 48 ›› Issue (5): 254-262.doi: 10.11896/jsjkx.200700064

• 计算机网络 • 上一篇    下一篇

交通路口场景下基于802.11p的车队通信性能分析模型

夏思洋, 吴琼, 倪渊之, 武贵路, 李正权   

  1. 江南大学物联网工程学院 江苏 无锡214122
  • 收稿日期:2020-07-09 修回日期:2020-10-03 出版日期:2021-05-15 发布日期:2021-05-09
  • 通讯作者: 吴琼(qiongwu@jiangnan.edu.cn)
  • 基金资助:
    国家自然科学基金(61701197);无锡市科技发展资金(H20191001)

Performance Analysis Model of 802.11p Based Platooning Communication at Traffic Intersection

XIA Si-yang, WU Qiong, NI Yuan-zhi, WU Gui-lu, LI Zheng-quan   

  1. School of Internet of Things Engineering,Jiangnan University,Wuxi,Jiangsu 214122,China
  • Received:2020-07-09 Revised:2020-10-03 Online:2021-05-15 Published:2021-05-09
  • About author:XIA Si-yang,born in 1996,postgra-duate.His main research interests include VANETs and communication protocols in autonomous driving.(siyangxia@stu.jiangnan.edu.cn)
    WU Qiong,born in 1986,Ph.D,associate professor,master supervisor.His main research interests include autonomous driving communication technology and so on.
  • Supported by:
    National Natural Science Foundation of China(61701197) and Wuxi Science and Technology Development Fund(H20191001).

摘要: 编队策略作为无人驾驶的关键技术之一已经受到广泛的研究与实际的测试了。车队经过红绿灯管制的交通路口场景时,会受到红绿灯时间、队内(外)间距、速度和前进方向等参数的影响,此时因为车队通信网络复杂多变,所以难以维持车队行驶的稳定性,因此可能会进一步造成车队中采用802.11p协议通信的车辆不能在规定的时延限制内接收到完整的重要信息,从而引发道路安全问题。针对此问题,文章考虑802.11p中支持4种传输优先级的数据接入信道的机制,即增强分布式信道接入(Enhanced Distributed Channel Access,EDCA)机制,提出了一种交通路口场景下无人驾驶车队通信性能分析模型。首先构建交通路口处车辆的通信连通网络,并通过建立无人驾驶车队移动模型获得网络通信性能;然后采用概率母函数的方法将典型的描述802.11p EDCA机制的马尔可夫模型转化为z域线性模型,针对4种接入类别的优先级差异,推导车队通信时延与包传递率(Packet Delivery Ratio,PDR)的分析模型;最后通过迭代方法计算出车队通信时延。仿真结果验证了分析模型的准确性,由实验结果可知,该模型中经过交通路口时的车队通信时延低于802.11p协议规定的100 ms且包传递率均高于0.95,因此,该模型能够保证车队通信的及时性与完整性。

关键词: 802.11pEDCA, 车队通信, 交通路口, 无人驾驶

Abstract: As one of the key technologies of automated driving,platooning strategy has been extensively studied and tested in practice.When platoons pass through the traffic intersection controlled by traffic light,kinetic parameters such as traffic light time,intra/inter-platoon spacing,speed,and moving direction are severely affected.At this time,since the platooning communication connectivity network is complex and variable,the driving stability of platoons is difficult to maintain,thus resulting in that the vehicles in platoons that communicate through 802.11p protocols cannot receive the complete important information within the specified delay limit,which finally leads to road safety issues.To solve this problem,considering the Enhanced Distributed Channel Access (EDCA) mechanism of the 802.11p protocol,which supports data of 4 transmission priorities to access channel,a novel communication performance analysis model for automated driving platoons under traffic intersection scenario is proposed.First,we build a connectivity network of vehicular communication at the traffic intersection and obtain the network communication performance through constructing the platoon moving model.Then,the classic Markov model that describes the 802.11p EDCA mechanism is transformed into a z-domain linear model by utilizing the method of probability generating function,and the platooning communication delay and packet delivery ratio (PDR) analysis model is deduced according to the priority differences of the 4 access categories.Finally,iterative method is used to calculate the platooning communication delay.The simulation results verify the accuracy of the analysis model,and it can be found that when passing through the intersection,the communication delay of platoons is lower than the 100ms specified by the 802.11p protocols and the packet delivery ratio is higher than 0.95,which ensures the timeliness and completeness of the platoon communication.

Key words: 802.11p EDCA, Automated driving, Platooning communication, Traffic intersection

中图分类号: 

  • TP393
[1]MEI J,ZHENG K,ZHAO L,et al.Joint Radio Resource Allocation and Control for Vehicle Platooning in LTE-V2V Network[J].IEEE Transactions on Vehicular Technology,2018,67(12):12218-12230.
[2]WANG R,WU J,YAN J.Resource Allocation for D2D-Enabled Communications in Vehicle Platooning[J].IEEE Access,2018,6:50526-50537.
[3]MARZBANI H,KHAYYAM H,CHING N T,et al.Autonomous Vehicles:Autodriver Algorithm and Vehicle Dynamics[J].IEEE Transactions on Vehicular Technology,2019,68(4):3201-3211.
[4]CHAE H,YI K.Virtual Target-Based Overtaking Decision,Motion Planning,and Control of Autonomous Vehicles[J].IEEE Access,2020,8:51363-51376.
[5]HYUNG J K,JI H Y.Takeover Requests in Simulated Partially Autonomous Vehicles Considering Human Factors[J].IEEE Transactions on Human-Machine Systems,2017,47(5):735-740.
[6]LIU B B,LIU W W,MAO X G,et al.Correctness Verification of Rules for Unmanned Vehicles' Decision System[J].Computer Science,2017,44(4):72-74,113.
[7]OKUYAMA T,GONSALVES T,UPADHAY J.AutonomousDriving System based on Deep Q Learnig[C]//2018 International Conference on Intelligent Autonomous Systems (ICoIAS).2018:201-205.
[8]XU W,ZHOU H,CHENG N,et al.Internetof vehicles in big data era[J].IEEE/CAA Journal of Automatica Sinica,2018,5(1):19-35.
[9]WU Q,LIU H,WANG R,et al.Delay Sensitive TaskOffloading in the 802.11p Based Vehicular Fog Computing Systems[J].IEEE Internet of Things Journal,2020,7(1):773-785.
[10]LIU Y,ZONG C,ZHANG D.Lateral control system for vehicle platoon considering vehicle dynamic characteristics[J].IET Intelligent Transport Systems,2019,13(9):1356-1364.
[11]KIM H J,YANG J H.Takeover Requests in Simulated Partially Autonomous Vehicles Considering Human Factors[J].IEEE Transactions on Human-Machine Systems,2017,47(5):735-740.
[12]NI Y,HE J,CAI L,et al.Data Uploading in Hybrid V2V/V2I Vehicular Networks:Modeling and Cooperative Strategy[J].IEEE Transactions on Vehicular Technology,2018,67(5):4602-4614.
[13]HAN C,DIANATI M,TAFAZOLLI R,et al.Analytical Study of the IEEE 802.11p MAC Sublayer in Vehicular Networks[J].IEEE Transactions on Intelligent Transportation Systems,2012,13(2):873-886.
[14]PENG H,LI D,YE Q,et al.Resource Allocation for Cellular-based Inter-Vehicle Communicationsin Autonomous Multiplatoons[J].IEEE Transactions on Vehicular Technology,2017,66(12):11249-11263.
[15]LIU B,JIA D,LU K,et al.A Joint Control Communication Design for Reliable Vehicle Platooning in Hybrid Traffic[J].IEEE Transactions on Vehicular Technology,2017,66(10):9394-9409.
[16]FENG Y,HE D,GUAN Y.Composite Platoon Trajectory Planning Strategy for Intersection Throughput Maximization[J].IEEE Transactions on Vehicular Technology,2019,68(7):6305-6319.
[17]PENG H,LI D,ABBOUD K,et al.Performance Analysis ofIEEE 802.11p DCF for Multiplatooning Communications With Autonomous Vehicles[J].IEEE Transactions on Vehicular Technology,2017,66(3):2485-2498.
[18]JIA D,LU K,WANG J.A Disturbance-Adaptive Design forVANET Enabled Vehicle Platoon[J].IEEE Transactions on Vehicular Technology,2014,63(2):527-539.
[19]BIANCHI G.Performance Analysis of the IEEE 802.11 Distri-buted Coordination Function[J].IEEE Journal on Selected Areas in Communications,2000,18(3):535-547.
[20]YAO Y,RAO L,LIU X.Performance and Reliability Analysis of IEEE 802.11p Safety Communication in a Highway Environment[J].IEEE Transactions on Vehicular Technology,2013,62(9):4198-4212.
[21]XU K,TIPPER D,QIAN Y,et al.Time-Dependent Performance Analysis of IEEE 802.11p Vehicular Networks[J].IEEE Transactions on Vehicular Technology,2016,65(7):5637-5651.
[22]ZHENG J,WU Q.Performance Modeling and Analysis of the IEEE802.11p EDCA Mechanism for VANET[J].IEEE Transactions on Vehicular Technology 2016,65(4):2673-2689.
[1] 李广敬, 鲍泓, 徐成.
一种基于3D激光雷达的实时道路边缘提取算法
Real-time Road Edge Extraction Algorithm Based on 3D-Lidar
计算机科学, 2018, 45(9): 294-298. https://doi.org/10.11896/j.issn.1002-137X.2018.09.049
[2] 刘斌斌,刘万伟,毛晓光,董威.
无人驾驶汽车决策系统的规则正确性验证
Correctness Verification of Rules for Unmanned Vehicles’ Decision System
计算机科学, 2017, 44(4): 72-74. https://doi.org/10.11896/j.issn.1002-137X.2017.04.015
[3] 谷明琴,蔡自兴,易亮.
面向无人驾驶车感知系统的自动曝光方法
Auto Exposure Algorithm for Perception System of Intelligent Vehicle
计算机科学, 2013, 40(6): 300-302.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!