计算机科学 ›› 2021, Vol. 48 ›› Issue (11): 176-183.doi: 10.11896/jsjkx.201000004
陈源毅1,3, 冯文龙2,3, 黄梦醒2,3, 冯思玲2,3
CHEN Yuan-yi1,3, FENG Wen-long2,3, HUANG Meng-xing2,3, FENG Si-ling2,3
摘要: 针对个性化推荐,常用的推荐算法有内容推荐、物品协同过滤(Item CF)和用户协同过滤(User CF),但是这些算法以及它们的改进算法大多偏向于关注用户的显性反馈(标签、评分等)或评分数据,缺少对多维度用户行为和行为顺序的利用,导致推荐准确率不够高及冷启动等问题。为了提高推荐精度,文中提出了一种基于知识图谱的行为路径协同过滤推荐算法(BR-CF)。首先根据用户行为数据,考虑行为顺序创建行为图谱(behavior graph)和行为路径(behavior route),然后采用向量化技术(Keras Tokenizer)将文本类型的路径向量化,最后计算多维度行为路径向量之间的相似度,对各维度分别进行路径协同过滤推荐。在此基础上,文中提出了两种BR-CF与Item CF相结合的改进算法。实验结果表明,在阿里天池数据集UserBehavior上,BR-CF算法能够有效地在多个维度中进行推荐,实现数据的充分利用和推荐的多样性,并且此改进算法很好地提升了Item CF的推荐性能。
中图分类号:
[1]CHANG L,ZHANG W T,GU T L,et al.Review of recommendation systems based on knowledge graph[J].CAAI Transactions on Intelligent Systems,2019,14(2):207-216. [2]CAI W L,ZHENG J B,PAN W K,et al.Neighborhood-En-hanced Transfer Learning for One-Class Collaborative Filtering[J].Neurocomputing,2019,341(14):80-87. [3]PENG F,LU X,MA C,et al.Multi-level preference regression for cold-start recommendations[J].International Journal of Machine Learning and Cybernetics,2018,9(7):1117-1130. [4]CORTES D.Cold-start recommendations in Collective MatrixFactorization[J].arXiv:1809.03666,2018. [5]WANG C D,DENG Z H,LAI J H,et al.Serendipitous Recommendation in E-Commerce Using Innovator-Based Collaborative Filtering[J].IEEE Transactions on Cybernetics,2018,49(7):2678-2692. [6]CAI F,WANG S,RIJKE M D.Behavior-based personalization in web search[J].Journal of the Association for Information Science &Technology,2017,68(4):855-868. [7]HUANG X Y,XIONG L Y,LI Q D.Personalized news recommendation technology based on improved collaborative filtering algorithm[J].Journal of Sichuan University(Natural Science Edition),2018,55(1):49-55. [8]HUANG D X.Research on user dynamic interest model inrecommendation system [D].Guangzhou:South China University of Technology,2018. [9]SHEN D D,WANG H T,JIANG Y,et al.A next recommendation algorithm based on knowledge map and short-term prefe-rence[J].Minicomputer System,2020(4):849-854. [10]CHEN X,XU H,ZHANG Y,et al.Sequential Recommendation with User Memory Networks[C]//The Eleventh ACM International Conference.ACM,2018. [11]LI W J.Research on time aware recommendation algorithm[D].Chengdu:University of Electronic Science and Technology,2017. [12]KANG J Y,SU F J.Long and short interest recommendation model based on generative countermeasure network[J].Computer Technology and Development,2020,30(6):35-39. [13]ZHANG Z P,SHEN X Y.Research on User Behavior Recommendation Method Based on Deep Learning[J].Computer Engineering and Applications,2019,55(4):142-147,158. [14]GUI Z Y,ZHANG Y M,LI W W.Research on Learning Resource Recommendation Algorithm Based on behavior sequence analysis[J].Computer Application Research,2020,37(7):1979-1982. [15]DUAN W Q.Prediction of online purchasing behavior based on user behavior sequence[D].Nanchang:Jiangxi University of Finance and Economics,2019. [16]CHAI L,XU H F,LUO Z M,et al.A multi-source heteroge-neous data analytic method for future price fluctuation prediction[J].Neurocomputing,2020,418:11-20. [17]HUANG M X,LI M L,HAN H R.Research on entity recognition and knowledge mapping based on electronic medical record[J].Computer Application Research,2019,36(12):3735-3739. [18]SHAO B L,LI X J,BIAN G Q.A survey of research hotspots and frontier trends of recommendation systems from the perspective of knowledge graph[J].Expert Systems With Applications,2020:113764. [19]CHE J Q,XIE H W.Hierarchical collaborative filtering recommendation algorithm based on spark[J].Electronic technology application,2015,41(9):135-138. [20]HAN D,SHEN X,GAN T,et al.A Dynamic Individual Recommendation Method Based on ReinforcementLearning[C]//International Symposium on Parallel Architecture,Algorithm and Programming.2017. [21]LI C,HU W L.Exploration on experience model of recommendation system-taking video recommendation as an example[J].Industrial Design Research,2018(5):81-85. [22]SYAEKHONI M A,LEE C,KEON Y S.Analyzing customer behavior from shopping path data using operation edit distance[J].Applied Intelligence,2016,48:1912-1932. [23]WANG H,XIA Z Q.Research on recommendation algorithmbased on ant colony algorithm and browsing path[J].China Science and Technology Information,2009(7):103-104. [24]XIONG Y R.Recommendation algorithm based on user behavior trajectory [D].Chengdu:University of Electronic Science and Technology of China,2013. [25]LEI M L.Research on shopping behavior based on Alibaba bigdata[J].Internet of Things Technology,2016,6(5):57-60. |
[1] | 蒲岍岍, 雷航, 李贞昊, 李晓瑜. 增强列表信息和用户兴趣的个性化新闻推荐算法 Personalized News Recommendation Algorithm with Enhanced List Information and User Interests 计算机科学, 2022, 49(6): 142-148. https://doi.org/10.11896/jsjkx.210400173 |
[2] | 王美玲, 刘晓楠, 尹美娟, 乔猛, 荆丽娜. 基于评论和物品描述的深度学习推荐算法 Deep Learning Recommendation Algorithm Based on Reviews and Item Descriptions 计算机科学, 2022, 49(3): 99-104. https://doi.org/10.11896/jsjkx.210200170 |
[3] | 董晓梅, 王蕊, 邹欣开. 面向推荐应用的差分隐私方案综述 Survey on Privacy Protection Solutions for Recommended Applications 计算机科学, 2021, 48(9): 21-35. https://doi.org/10.11896/jsjkx.201100083 |
[4] | 赵金龙, 赵中英. 基于异质信息网络表示学习与注意力神经网络的推荐算法 Recommendation Algorithm Based on Heterogeneous Information Network Embedding and Attention Neural Network 计算机科学, 2021, 48(8): 72-79. https://doi.org/10.11896/jsjkx.200800226 |
[5] | 熊旭东, 杜圣东, 夏琬钧, 李天瑞. 基于二分图卷积表示的推荐算法 Recommendation Algorithm Based on Bipartite Graph Convolution Representation 计算机科学, 2021, 48(4): 78-84. https://doi.org/10.11896/jsjkx.200400023 |
[6] | 宁泽飞, 孙静宇, 王欣娟. 基于知识图谱和标签感知的推荐算法 Recommendation Algorithm Based on Knowledge Graph and Tag-aware 计算机科学, 2021, 48(11): 192-198. https://doi.org/10.11896/jsjkx.201000085 |
[7] | 王瑞平, 贾真, 刘畅, 陈泽威, 李天瑞. 基于DeepFM的深度兴趣因子分解机网络 Deep Interest Factorization Machine Network Based on DeepFM 计算机科学, 2021, 48(1): 226-232. https://doi.org/10.11896/jsjkx.191200098 |
[8] | 刘君良, 李晓光. 个性化推荐系统技术进展 Techniques for Recommendation System:A Survey 计算机科学, 2020, 47(7): 47-55. https://doi.org/10.11896/jsjkx.200200114 |
[9] | 马海江. 基于卷积神经网络与约束概率矩阵分解的推荐算法 Recommendation Algorithm Based on Convolutional Neural Network and Constrained Probability Matrix Factorization 计算机科学, 2020, 47(6A): 540-545. https://doi.org/10.11896/JsJkx.191000172 |
[10] | 周波. 融合语义模型的二分网络推荐算法 Bipartite Network Recommendation Algorithm Based on Semantic Model 计算机科学, 2020, 47(11A): 482-485. https://doi.org/10.11896/jsjkx.200400028 |
[11] | 康林瑶, 唐兵, 夏艳敏, 张黎. 基于GPU加速和非负矩阵分解的并行协同过滤推荐算法 GPU-accelerated Non-negative Matrix Factorization-based Parallel Collaborative Filtering Recommendation Algorithm 计算机科学, 2019, 46(8): 106-110. https://doi.org/10.11896/j.issn.1002-137X.2019.08.017 |
[12] | 张艳红, 张春光, 周湘贞, 王怡鸥. 项目多属性模糊联合的多样性视频推荐算法 Diverse Video Recommender Algorithm Based on Multi-property Fuzzy Aggregate of Items 计算机科学, 2019, 46(8): 78-83. https://doi.org/10.11896/j.issn.1002-137X.2019.08.012 |
[13] | 张宏丽, 白翔宇, 李改梅. 利用最近邻域推荐且结合情境感知的个性化推荐算法 Personalized Recommendation Algorithm Based on Recent Neighborhood Recommendation and Combined with Context Awareness 计算机科学, 2019, 46(4): 235-240. https://doi.org/10.11896/j.issn.1002-137X.2019.04.037 |
[14] | 宾晟, 孙更新. 基于多关系社交网络的协同过滤推荐算法 Collaborative Filtering Recommendation Algorithm Based on Multi-relationship Social Network 计算机科学, 2019, 46(12): 56-62. https://doi.org/10.11896/jsjkx.181102189 |
[15] | 周波. 二分网络推荐算法与协同过滤算法的关系研究 Research on Relationship Between Bipartite Network Recommendation Algorithm and Collaborative Filtering Algorithm 计算机科学, 2019, 46(11A): 163-166. |
|