计算机科学 ›› 2014, Vol. 41 ›› Issue (3): 71-75.

• 2013' 粗糙集 • 上一篇    下一篇

基于粒关联规则的冷启动推荐方法

巫文佳,何旭   

  1. 闽南师范大学粒计算及其应用重点实验室 漳州363000;闽南师范大学粒计算及其应用重点实验室 漳州363000
  • 出版日期:2018-11-14 发布日期:2018-11-14
  • 基金资助:
    本文受国家自然科学基金面上项目(61170128),福建省自然科学基金项目(2012J01294),福建省自然科学基金省属高校专项(JK2012028),福建省计算机应用技术和信号与信息系统研究生教育创新基地(闽高教[2008]114号)资助

Cold-start Recommendation Based on Granular Association Rules

WU Wen-jia and HE Xu   

  • Online:2018-11-14 Published:2018-11-14

摘要: 推荐系统已被广泛应用于电子商务等多个领域。冷启动问题是推荐系统的一个难点。基于粒关联规则的冷启动推荐方法,运用粒来描述用户和产品,通过满足粒关联规则的4个指标,挖掘出用户和产品之间的关联规则,匹配合适的规则,最后根据这些规则向用户做出相应的推荐。在公开有效的数据集MovieLens上进行了实验,结果表明,用粒关联规则所挖掘出的规则可以有效地用于训练集和测试集上的推荐,并且具有较好的准确性。

关键词: 粒计算,关联规则,推荐系统,冷启动问题,数据挖掘 中图法分类号TP18文献标识码A

Abstract: Recommendation systems have been widely used in many fields such as e-commerce.The cold-start problem is one of difficulties on recommendation systems.This paper designed a cold-start recommendation approach based on granular association rules.First,we used granules to describe users and items.Then we generated rules between users and items through satisfying four measures of granular association rules.Finally,we matched the suitable rules to re-commend items to users.Experiments were undertaken on a publicly available dataset MovieLens.Results show that granular association mining rule can be used for the recommendation on training and testing sets effectively and accurately.

Key words: Granular computing,Association rule,Recommendation system,Cold-start problem,Data mining

[1] Mooney R J,Roy L.Content-based book recommending using learning for text categorization [C]∥Proceedings of the fifth ACM conference on Digital libraries.ACM,2000:195-204
[2] Pazzani M J,Billsus D.Content-based recommendation systems [M].The adaptive web.Springer Berlin Heidelberg,2007:325-341
[3] Goldberg D,Nichols D,Oki B M,et al.Using collaborative filtering to weave an information tapestry [J].Communications of the ACM,1992,35(12):61-70
[4] Cremonesi P,Turrin R,Airoldi F.Hybrid algorithms for recommending new items [C]∥Proceedings of the second International Workshop on Information Heterogeneity and Fusion in Re-commender Systems.ACM,2011:33-40
[5] Balabanovi′M,Shoham Y.Fab:content-based,collaborative recommendation [J].Communications of the ACM,1997,40(3):66-72
[6] Schein A I,Popescul A,Ungar L H,et al.Methods and metrics for cold-start recommendations [C]∥Proceedings of the 25th annual international ACM SIGIR conference on research and development in information retrieval.ACM,2002:253-260
[7] Min F,Hu Q,Zhu W.Granular association rules with four subtypes [C]∥Granular Computing (GrC),2012IEEE International Conference on.IEEE,2012:353-358
[8] Min F,Hu Q,Zhu W.Granular association rules on two universes with four measures [J].arXiv preprint arXiv:1209.5598,2012
[9] Min F,Zhu W.Granular association rule mining through parametric rough sets [M].Brain Informatics.Springer Berlin Heidelberg,2012:320-331
[10] He X,Min F,Zhu W.A comparative study of discretization approaches for granular association rule mining [C]∥Proceedings of the 2013Canadian Conference on Electrical and Computer Engineering.2013
[11] Min F,Zhu W.Granular association rules for multi-valued data [C]∥Proceedings of the 2013Canadian Conference on Electrical and Computer Engineering.2013
[12] Lin T Y.Granular computing on binary relations I:data mining and neighborhood systems [J].Rough sets in knowledge discovery,1998,1:107-121
[13] Zhu W,Wang F Y.Reduction and axiomization of covering generalized rough sets [J].Information sciences,2003,152:217-230
[14] Yao Y,Deng X.A granular computing paradigm for conceptlearning [M].Emerging Paradigms in Machine Learning.Springer Berlin Heidelberg,2013:307-326
[15] 苗夺谦.粒计算:过去,现在与展望[M].北京:科学出版社,2007
[16] Min F,Zhu W,He X.Grale:Granular association rules.http://grc.fjzs.edu.cn/~fmin/grale/,2013
[17] Pawlak Z.Rough sets [J].International Journal of Computer & Information Sciences,1982,11(5):341-356
[18] Skowron A,Stepaniuk J.Approximation of relations [M].Rough Sets,Fuzzy Sets and Knowledge Discovery.London:Springer,1994:161-166

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!