计算机科学 ›› 2022, Vol. 49 ›› Issue (7): 57-63.doi: 10.11896/jsjkx.210800070

• 数据库&大数据&数据科学* 上一篇    下一篇

基于数据增广和模型集成策略的图神经网络在抑郁症识别上的应用

杨炳新, 郭艳蓉, 郝世杰, 洪日昌   

  1. 合肥工业大学计算机与信息学院 合肥230601
  • 收稿日期:2021-08-08 修回日期:2022-03-02 出版日期:2022-07-15 发布日期:2022-07-12
  • 通讯作者: 郭艳蓉(yrguo@hfut.edu.cn)
  • 作者简介:(yangbingxin0101@163.com)
  • 基金资助:
    国家重点研发计划(2019YFA0706200);国家自然科学基金(62072152);安徽省自然科学基金(1808085QF188);中央高校基本科研业务费专项资金(PA2020GDKC0023,PA2019GDZC0095)

Application of Graph Neural Network Based on Data Augmentation and Model Ensemble in Depression Recognition

YANG Bing-xin, GUO Yan-rong, HAO Shi-jie, Hong Ri-chang   

  1. School of Computer Science and Information Engineering,Hefei University of Technology,Hefei 230601,China
  • Received:2021-08-08 Revised:2022-03-02 Online:2022-07-15 Published:2022-07-12
  • About author:YANG Bing-xin,born in 1995,postgra-duate.His main research interests include machine learning and computer vision.
    GUO Yan-rong,born in 1984,professor.Her main research interests include biomedical image segmentation and ana-lysis.
  • Supported by:
    National Key R&D Program of China(2019YFA0706200),National Nature Science Foundation of China(62072152),Natural Science Foundation of Anhui Province,China(1808085QF188) and Fundamental Research Funds for the Central Universities of Ministry of Education of China(PA2020GDKC0023,PA2019GDZC0095).

摘要: 目前对抑郁症的主流诊断方式是通过医生和患者之间的沟通交流来填写相关的问卷量表,这需要相应的临床知识并且诊断结果存在主观性,给抑郁症诊断带来了很多挑战。利用信息处理技术对生理信号进行分析,构建精准客观的辅助诊断模型具有重要价值,然而目前抑郁症辅助诊断的公共数据集普遍存在样本偏少的情况,使得辅助诊断的精度普遍偏低。基于此,文中提出了一种基于数据增广和模型集成策略的图神经网络的抑郁症识别方法,该方法利用53位受试者的128通道脑电信号(Electroencephalogram,EEG),对采集到的脑电信号进行数据切分并将其用于数据增广后,利用皮尔逊相关系数计算不同通道之间的相关度,从而构造脑网络,并利用图神经网络学习脑网络的特征,然后将得到的预测结果利用模型集成策略进行多数投票,得到受试者最终的预测结果。经过实验证明,所提方法提高了网络的分类能力,解决了因样本小而带来的分类能力差的问题,在兰州大学普适感知与智能系统实验室提供的MODMA数据集(包含24名抑郁症患者和29名正常对照组)上取得了77%的分类准确率,与其他方法相比,所提方法的分类准确率有明显的提升。

关键词: 分类, 模型集成, 脑电信号, 数据增广, 图神经网络, 抑郁症识别

Abstract: At present,the mainstream diagnosis of depression is through the communication between doctors and patients,filling in the relevant questionnaire,which needs corresponding clinical knowledge and is subjective.It brings a lot of challenges to the diagnosis of depression.Using information processing technology to analyze physiological signals and build an accurate and objective auxiliary diagnosis model is of great value.However,the sample size of the public data set of depression auxiliary diagnosis is generally small,which makes the accuracy of auxiliary diagnosis is generally low.On this basis,this paper proposes a graph neural network (GNN) method for depression recognition based on data augmentation and model ensemble strategy.The method uses 128 channel EEG signals of 53 subjects and segments the collected EEG data.After data augmentation,Pearson correlation coefficient is used to calculate the correlation between different channels to construct a brain network,graph neural network is used to learn the features of brain network,and the final prediction results are obtained by majority voting with model ensemble strategy.Experimental results show that the proposed method improves the classification ability of the network and solves the problem of poor classification performance caused by small sample size.The proposed method achieves 77% classification accuracy on the MODMA data set(including 24 patients with depression and 29 normal controls) provided by the Pervasive Sensing and Intelligent Systems Laboratory of Lanzhou University.The classification accuracy of the proposed method is significantly improved compared to other methods.

Key words: Classification, Data augmentation, Depression recognition, EEG, Graph neural network, Model ensemble

中图分类号: 

  • TP391
[1]ZUNG W W.A Self-Rating Depression Scale[J].Archives ofGeneral Psychiatry,1965,12(1):63-70.
[2]EHDE D M.Hamilton Depression Rating Scale[M]//Encyclopedia of Clinical Neuropsychology.New York:Springer,2011:1205-1207.
[3]BECK A T,STEER R A,CARBIN M G.Psychometric properties of the Beck Depression Inventory:Twenty-five years of evaluation[J].Clinical Psychology Review,1988,8(1):77-100.
[4]SEGAL D L.Diagnostic and Statistical Manual of Mental Disorders(DSM-IV-TR) [M]//The Corsini Encyclopedia of Psychology.John Wiley & Sons,Ltd,2010:1-3.
[5]CHANG C C,LIN C J.LIBSVM:a library for support vector machines[J].ACM transactions on intelligent systems and technology(TIST),2011,2(3):1-27.
[6]PETERSON L E.K-nearest neighbor[J].Scholarpedia,2009,4(2):1883-1895.
[7]CAI H,QU Z,LI Z,et al.Feature-level Fusion ApproachesBased on Multimodal EEG Data for Depression Recognition[J].Information Fusion,2020,59:127-138.
[8]HU B,RAO J,LI X,et al.Emotion regulating attentional control abnormalities in major depressive disorder:an event-related potential study[J].Scientific Reports,2017,7(1):1-21.
[9]JIANG H,HU B,LIU Z,et al.Investigation of different speech types and emotions for detecting depression using different classifiers[J].Speech Communication,2017,90:39-46.
[10]LI X,TONG C,SUN S,et al.Classification study on eye movement data:Towards a new approach in depression detection[C]//2016 IEEE Congress on Evolutionary Computation (CEC).IEEE,2016:1227-1232.
[11]LU S,XU J,LI M,et al.Attentional bias scores in patients with depression and effects of age:a controlled,eye-tracking study[J].Journal of International Medical Research,2017,45(4):1518-1527.
[12]BAILEY N W,KREPEL N,DIJK H V,et al.Resting EEG theta connectivity and alpha power to predict repetitive transcranial magnetic stimulation response in depression:A non-replication from the ICON-DB consortium[J].Clinical Neurophysiology,2021,132(2):650-659.
[13]ZHU J,WANG Z,GONG T,et al.An Improved Classification Model for Depression Detection Using EEG and Eye Tracking Data[J].IEEE Transactions on Nano Bioscience,2020,19(3):527-537.
[14]CHEN F,ZHAO L,LI B,et al.Depression evaluation based on prefrontal EEG signals in resting state using fuzzy measure entropy[J/OL].Physiological Measurement,2020,41(9):095007.https://www.researchgate.net/publication/343799441_Depression_evaluation_based_on_the_prefrontal_EEG_signal_in_resting_state_using_the_fuzzy_measure_entropy.
[15]LI X W,HU B,SUN S T,et al.EEG-based mild depressive detection using feature selection methods and classifiers.[J].Computer Methods & Programs in Biomedicine,2016,136(C):151-161.
[16]LI P,SONG X,JING W,et al.Reduced sensitivity to neutralfeedback versus negative feedback in subjects with mild depression:Evidence from event-related potentials study[J].Brain & Cognition,2015,100(NOV.):15-20.
[17]ACHARYA U R,SUDARSHAN V K,ADELI H,et al.A Novel Depression Diagnosis Index Using Nonlinear Features in EEG Signals[J].European Neurology,2016,74:79-83.
[18]KAUR C,SINGH P,BISHT A,et al.EEG Signal denoisingusing hybrid approach of Variational Mode Decomposition and wavelets for depression[J].Biomedical Signal Processing and Control,2020,65(4):102337.
[19]MAHATO S,GOYAL N,RAM D,et al.Detection of Depression and Scaling of Severity Using Six Channel EEG Data[J].Journal of Medical Systems,2020,44(7):118.
[20]BOCHAROV A V,KNYAZEV G G,Savostyanov A N,et al.Relationship of Depression,Anxiety,and Rumination Scores with EEG Connectivity of Resting State Networks[J].Human Physiology,2021,47(2):123-127.
[21]CAI H,HAN J,CHEN Y,et al.A Pervasive Approach to EEG-Based Depression Detection[J/OL].Complexity,2018(1):13.https://www.hindawi.com/journals/complexity/2018/5238028/.
[22]AKBARI H,SADIQ M T,REHMAN A U,et al.Depression recognition based on the reconstruction of phase space of EEG signals and geometrical features[J].Applied Acoustics,2021,179:1-16.
[23]ZHANG X,HU B,ZHOU L,et al.An EEG based pervasive depression detection for females[C]//Joint International Confe-rence on Pervasive Computing and the Networked World.Berlin:Springer,2012:848-861.
[24]HOSSEINIFARD B,MORADI M H,ROSTAMI R.Classifying depression patients and normal subjects using machine learning techniques and nonlinear features from EEG signal[J].Compu-ter Methods and Programs in biomedicine.2013,109(3):339-345.
[25]LIAO S C,WU C T,HUANG H C,et al.Major Depression Detection from EEG Signals Using Kernel Eigen-Filter-Bank Common Spatial Patterns[J].Sensors,2017,17(6):1385-1402.
[26]ZHONG P,WANG D,MIAO C.EEG-Based Emotion Recognition Using Regularized Graph Neural Networks[J/OL].IEEE Transactions on Affective Computing,2020.https://ieeexplore.ieee.org/document/9091308/.
[27]SONG T,LIU S,ZHENG W,et al.Instance-Adaptive Graph for EEG Emotion Recognition[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020:2701-2708.
[28]SUNS T,LI X W,ZHU J,et al.Graph Theory Analysis ofFunctional Connectivity in Major Depression Disorder with High-Density Resting State EEG Data[J].IEEE transactions on neural systems and rehabilitation engineering:a publication of the IEEE Engineering in Medicine and Biology Society,2019,27(3):429-439.
[29]SCARSELLI F,GORI M,AC TSOI,et al.The Graph Neural Network Model[J].IEEE Transactions on Neural Networks,2009,20(1):61-80.
[30]DOUGLAS B L.The Weisfeiler-Lehman Method and Graph Isomorphism Testing[J].arXiv:1101.5211,2011.
[31]XU K,HU W,LESKOVEC J,et al.How powerful are graphneural networks? [J].arXiv:1810.00826,2018.
[32]WIENER G.Search for a majority element[J].Journal of Statistical Planning & Inference,2002,100(2):313-318.
[33]CAI H,GAO Y,SUN S,et al.MODMA dataset:a Multi-model Open Dataset for Mental- disorder Analysis[J].arXiv:2002.09283,2020.
[34]NGUYEN D Q,NGUYEN T D,PHUNG D.Unsupervised Universal Self-Attention Network for Graph Classification[J].ar-Xiv:1909.11855,2019.
[35]ZHANG Z,BU J,ESTER M,et al.Hierarchical Graph Pooling with Structure Learning[J].arXiv:1911.05954,2019.
[36]YANG J,NIU J,ZENG S,et al.Resting state EEG based depression recognition research using voting strategy method[C]//2018 IEEE International Conference on Bioinformatics and Biomedicine(BIBM).IEEE,2018:2666-2673.
[1] 陈志强, 韩萌, 李慕航, 武红鑫, 张喜龙.
数据流概念漂移处理方法研究综述
Survey of Concept Drift Handling Methods in Data Streams
计算机科学, 2022, 49(9): 14-32. https://doi.org/10.11896/jsjkx.210700112
[2] 周芳泉, 成卫青.
基于全局增强图神经网络的序列推荐
Sequence Recommendation Based on Global Enhanced Graph Neural Network
计算机科学, 2022, 49(9): 55-63. https://doi.org/10.11896/jsjkx.210700085
[3] 周旭, 钱胜胜, 李章明, 方全, 徐常胜.
基于对偶变分多模态注意力网络的不完备社会事件分类方法
Dual Variational Multi-modal Attention Network for Incomplete Social Event Classification
计算机科学, 2022, 49(9): 132-138. https://doi.org/10.11896/jsjkx.220600022
[4] 武红鑫, 韩萌, 陈志强, 张喜龙, 李慕航.
监督和半监督学习下的多标签分类综述
Survey of Multi-label Classification Based on Supervised and Semi-supervised Learning
计算机科学, 2022, 49(8): 12-25. https://doi.org/10.11896/jsjkx.210700111
[5] 郝志荣, 陈龙, 黄嘉成.
面向文本分类的类别区分式通用对抗攻击方法
Class Discriminative Universal Adversarial Attack for Text Classification
计算机科学, 2022, 49(8): 323-329. https://doi.org/10.11896/jsjkx.220200077
[6] 檀莹莹, 王俊丽, 张超波.
基于图卷积神经网络的文本分类方法研究综述
Review of Text Classification Methods Based on Graph Convolutional Network
计算机科学, 2022, 49(8): 205-216. https://doi.org/10.11896/jsjkx.210800064
[7] 闫佳丹, 贾彩燕.
基于双图神经网络信息融合的文本分类方法
Text Classification Method Based on Information Fusion of Dual-graph Neural Network
计算机科学, 2022, 49(8): 230-236. https://doi.org/10.11896/jsjkx.210600042
[8] 齐秀秀, 王佳昊, 李文雄, 周帆.
基于概率元学习的矩阵补全预测融合算法
Fusion Algorithm for Matrix Completion Prediction Based on Probabilistic Meta-learning
计算机科学, 2022, 49(7): 18-24. https://doi.org/10.11896/jsjkx.210600126
[9] 高振卓, 王志海, 刘海洋.
嵌入典型时间序列特征的随机Shapelet森林算法
Random Shapelet Forest Algorithm Embedded with Canonical Time Series Features
计算机科学, 2022, 49(7): 40-49. https://doi.org/10.11896/jsjkx.210700226
[10] 张洪博, 董力嘉, 潘玉彪, 萧宗志, 张惠臻, 杜吉祥.
视频理解中的动作质量评估方法综述
Survey on Action Quality Assessment Methods in Video Understanding
计算机科学, 2022, 49(7): 79-88. https://doi.org/10.11896/jsjkx.210600028
[11] 黄璞, 沈阳阳, 杜旭然, 杨章静.
基于局部约束特征线表示的人脸识别
Face Recognition Based on Locality Constrained Feature Line Representation
计算机科学, 2022, 49(6A): 429-433. https://doi.org/10.11896/jsjkx.210300169
[12] 杨涵, 万游, 蔡洁萱, 方铭宇, 吴卓超, 金扬, 钱伟行.
基于步态分类辅助的虚拟IMU的行人导航方法
Pedestrian Navigation Method Based on Virtual Inertial Measurement Unit Assisted by GaitClassification
计算机科学, 2022, 49(6A): 759-763. https://doi.org/10.11896/jsjkx.211200148
[13] 邵欣欣.
TI-FastText自动商品分类算法
TI-FastText Automatic Goods Classification Algorithm
计算机科学, 2022, 49(6A): 206-210. https://doi.org/10.11896/jsjkx.210500089
[14] 陈景年.
一种适于多分类问题的支持向量机加速方法
Acceleration of SVM for Multi-class Classification
计算机科学, 2022, 49(6A): 297-300. https://doi.org/10.11896/jsjkx.210400149
[15] 杨健楠, 张帆.
一种结合双注意力机制和层次网络结构的细碎农作物分类方法
Classification Method for Small Crops Combining Dual Attention Mechanisms and Hierarchical Network Structure
计算机科学, 2022, 49(6A): 353-357. https://doi.org/10.11896/jsjkx.210200169
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!