计算机科学 ›› 2022, Vol. 49 ›› Issue (9): 194-201.doi: 10.11896/jsjkx.210700107

• 人工智能 • 上一篇    下一篇

基于空间运动约束的无人机碰撞回避规划

罗熊丰, 翟象平   

  1. 南京航空航天大学计算机科学与技术学院 南京 211106
  • 收稿日期:2021-07-12 修回日期:2022-03-04 出版日期:2022-09-15 发布日期:2022-09-09
  • 通讯作者: 翟象平(blueicezhaixp@nuaa.edu.cn)
  • 作者简介:(luoxiongfengaugust@qq.com)
  • 基金资助:
    国家自然科学基金(61701231,61802181)

Collision Avoidance Planning for Unmanned Aerial Vehicles Based on Spatial Motion Constraints

LUO Xiong-feng, ZHAI Xiang-ping   

  1. College of Computer Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China
  • Received:2021-07-12 Revised:2022-03-04 Online:2022-09-15 Published:2022-09-09
  • About author:LUO Xiong-feng,born in 1998,is a member of China Computer Federation.His main research interests include UAV and Internet of things.
    ZHAI Xiang-ping,born in 1984,Ph.D,associate professor,is a member of China Computer Federation.His main research interests include the area of UAV,Internet of things,wireless networks,resource optimization,and spatial analysis.
  • Supported by:
    National Natural Science Foundation of China(61701231,61802181).

摘要: 三维空间中,面对移动的障碍物,无人机如何进行运动规划是一个很有趣的研究方向。在动态环境下,传统的基于速度障碍物的算法主要针对二维机器人。用机器人的可达速度集减去导致碰撞的速度集,然后选取合适的速度实现避障动作。根据无人机和障碍物的当前位置和速度进行泛化的三维矢量运算,计算导致碰撞的速度集合。依据无人机制动器的最大速度和最大加速度,对其当前时刻可达到的速度空间进行约束。在这个相减集合中,依据场景的需求制定相应的策略并选取合适的速度,实现三维场景下的回避障碍物规划。针对被抽象为球状的无人机在三维空间下躲避球状障碍物行驶至终点的场景,在虚幻四引擎中结合C++编程和图形化编程实现了避障算法并进行验证。通过捕捉不同策略的运动轨迹,度量其耗时,有效地验证了所提算法能够完成无人机在三维空间下的动态障碍物回避任务。

关键词: 动态环境, 碰撞回避, 运动规划, 速度障碍物, 可达速度集

Abstract: In three-dimensional space,how to conduct motion planning when unmanned aerial vehicles(UAV)facing moving obstacles is an interesting research direction.In dynamic environments,traditional algorithms based on the speed obstacles mainly aim at two-dimensional robots,which realizes obstacle avoidance actions by selecting velocities from the reachable velocity set out of the collision velocity set.This paper generalizes algorithms based on the current positions and velocities of UAV and obstacles to calculate the set of velocities that will cause collisions.According to the maximum speed and maximum acceleration of UAV,the velocity space that can be reached at the current moment is restricted.Different strategies are formulated for the needs of various scenes and are selected in a specific method in this subtraction set,so as to avoid obstacles in a three-dimensional scene with specific requirements.Aiming at the scene where UAV abstracted as spherical travels to the destination by avoiding spherical obstacles in 3D space,this paper verifies the obstacle avoidance algorithm by combining C++ and blueprint programming.It captures the movement trajectory of different strategies and records the corresponding consumption time,which demonstrates that the proposed algorithm can effectively complete the dynamic obstacle avoidance task of UAV in three-dimensional space.

Key words: Dynamic environments, Collision avoidance, Motion planning, Velocity obstacle, Reachable velocity set

中图分类号: 

  • TP242
[1]SUN D S,WANG Y.Robot control technology[M].Beijing:Machinery Industry Press,1997.
[2]WANG Z,WEN M,DANG S,et al.Trajectory design and resource allocation for UAV energy minimization in a rotary-wing UAV-enabled WPCN[J].AEJ-Alexandria Engineering Journal,2020,60(1):1787-1796.
[3]HAYWARD V,AUBRY S,FOISY A,et al.Efficient collisionprediction among many moving obstacles[J].International Journal of Robotics Research,1995.14(2):129-143.
[4]XI Y G,ZHANG C G.Rolling path planning of mobile robot in a kind of dynamic uncertain environment [J].Acta Automatica Sinica,2002,28(2):161-175.
[5]REIF J,SHARIR M.Motion planning in the presence of moving obstacles[C]//Symposium on Foundations of Computer Science.2008.
[6]ERDMANN M,LOZANO-PEREZ T.On multiple moving objects[J].Massachusetts Institute of Technology,1986,2(4):477-521.
[7]FUJIMURA K,SAMET H.A hierarchical strategy for pathplanning among moving obstacles[J].IEEE Trans.Robotics Automation,1989,5(1):61-69.
[8]KANT K,ZUCKER S W.Toward Efficient Trajectory Plan-ning:The Path-Velocity Decomposition[J].International Journal of Robotics Research,1986,5(3):72-89.
[9]LEE B H,MEMBER,IEEE,et al.Collision-Free Motion Planning of Two Robots[J].IEEE Transactions on Systems Man & Cybernetics,1987,17(1):21-32.
[10]FRAICHARD T.Dynamic trajectory planning with dynamicconstraints:A ‘state-time space' approach[C]//IEEE/RSJ International Conference on Intelligent Robots & Systems.IEEE,1993.
[11]FRAICHARD T,LAUGIER C.Path-velocity decomposition revisited and applied to dynamic trajectory planning[C]//IEEE International Conference on Robotics & Automation.IEEE,1993.
[12]FUJIMURA K.Time-minimum routes in time-dependent net-works[J].IEEE Transactions on Robotics & Automation,1995,11(3):343-351.
[13]FUJIMURA K,SAMET H.Time-minimal paths among moving obstacles[C]//IEEE International Conference on Robotics & Automation.IEEE,1989.
[14]FUJIMURA K.Motion Planning Amid Transient Obstacles[J].The International Journal of Robotics Research,1994,13(5):395-407.
[15]SANBORN J.A model of reaction for planning in dynamic environments[J].Artificial Intelligence in Engineering,1988,3(2):95-102.
[16]TSUBOUCHI T,ARIMOTO S.Behavior of a mobile robotnavigated by an “iterated forecast and planning” scheme in the presence of multiple moving obstacles[C]//IEEE International Conference on Robotics & Automation.IEEE,1994.
[17]FIORINI P,SHILLER Z.Motion planning in dynamic environments using the relative velocity paradigm[C]//International Conference on Robotics and Automation.IEEE,1993.
[18]FIORINI P,SHILLER Z.Robot Motion Planning in DynamicEnvironments[M].Springer,1996.
[19]FIORINI P,SHILLER Z.Motion Planning in Dynamic Environments Using Velocity Obstacles[J].International Journal of Robotics Research,1998,17(7):760-772.
[20]LI L,YE T,TAN M,et al.Presentstate and future development of mobile robot technology research[J].ROBOT,2002,24(5):475-480.
[21]ZHUANG X D,MENG Q C,YIN B,et al.A method of robot's path searching in dynamic environment based on fuzzy concept[J].ROBOT,2001,23(5):397-399,458.
[22]LI R F,LI W Z.Path Planning for Mobile Robot Based onMulti-sensor Information [J].Mechatronics,2002(4):21-24.
[23]YUNG N H C,YE C.An intelligent mobile vehicle navigatorbased on fuzzy logic and reinforcement learning [J].IEEE Transactions on Systems Man & Cybernetics Part B Cyberne-tics A Publication of the IEEE Systems Man & Cybernetics Society,1999,29(2):314-321.
[24]WANG J,HUANG X H.Obstacle-avoidance control of the two-wheeled cart based on evolving neural network[J].ROBOT,1996,18(5):292-297.
[25]LIU C,WANG H L,YAO P,et al.Modeling and analysis of dynamic collision region for UAV avoiding aerial intruders [J].Journal of Beijing University of Aeronautics and Astronautics,2015,41(7):1231-1238.
[26]LÓPEZ A M,VILLALONGA G,SELLART L,et al.Training my car to see using virtual worlds-ScienceDirect[J].Image and Vision Computing,2017,68:102-118.
[27]O'ROURKE J,BADLER N.Decomposition of three-dimen-sional objects into spheres [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1979,1:295-305.
[1] 高文龙, 周天阳, 朱俊虎, 赵子恒.
基于双向蚁群算法的网络攻击路径发现方法
Network Attack Path Discovery Method Based on Bidirectional Ant Colony Algorithm
计算机科学, 2022, 49(6A): 516-522. https://doi.org/10.11896/jsjkx.210500072
[2] 孔颖, 孙明轩.
基于终态神经网络的冗余机械臂重复运动规划
Repeatable Motion Planning of Redundant Manipulators Based on Terminal Neural Networks
计算机科学, 2018, 45(12): 201-205. https://doi.org/10.11896/j.issn.1002-137X.2018.12.033
[3] 孔颖, 孙明轩.
Sylvester时变矩阵方程求解的终态神经网络算法
Terminal Neural Network Algorithm for Solution of Time-varying Sylvester Matrix Equations
计算机科学, 2018, 45(10): 207-211. https://doi.org/10.11896/j.issn.1002-137X.2018.10.038
[4] 刘敏,曾文华,刘玉珍.
动态进化多目标优化中的串式记忆方法
Bunchy Memory Method for Dynamic Evolutionary Multi-objective Optimization
计算机科学, 2016, 43(12): 241-247. https://doi.org/10.11896/j.issn.1002-137X.2016.12.044
[5] 李娟妮,华庆一,姬翔.
移动环境中任务分析及任务建模方法
Task Analysis and Task Modeling Method in Mobile Environment
计算机科学, 2014, 41(10): 210-215. https://doi.org/10.11896/j.issn.1002-137X.2014.10.045
[6] 肖国宝,严宣辉.
一种新型协作多机器人路径规划算法
New Cooperative Multi-robot Path Planning Algorithm
计算机科学, 2013, 40(4): 217-220.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!