计算机科学 ›› 2023, Vol. 50 ›› Issue (4): 125-132.doi: 10.11896/jsjkx.220800118

• 计算机图形学&多媒体 • 上一篇    下一篇

圣维南方程的3次B样条拟插值数值解

钱江, 张鼎   

  1. 河海大学理学院 南京 211100
  • 收稿日期:2022-08-12 修回日期:2022-11-09 出版日期:2023-04-15 发布日期:2023-04-06
  • 通讯作者: 张鼎(201312010009@hhu.edu.cn)
  • 作者简介:(qianjiangjob@hhu.edu.cn)

Numerical Solution of Saint-Venant Equation by Cubic B-spline Quasi-interpolation

QIAN Jiang, ZHANG Ding   

  1. College of Science,Hohai University,Nanjing 211100,China
  • Received:2022-08-12 Revised:2022-11-09 Online:2023-04-15 Published:2023-04-06
  • About author:QIAN Jiang,born in 1981,Ph.D,asso-ciate professor,master supervisor.His main research interests include numerical approximation,computational geometry,multivariate spline,finite element,etc.
    ZHANG Ding,born in 1999,postgra-duate.His main research interests include numerical approximation and computational geometry.

摘要: 首先针对不同阶的连续可导函数,对3次B样条拟插值算子进行相应的误差估计。其次将3次B样条拟插值方法用于求解圣维南方程,利用3次B样条拟插值的一阶导数近似圣维南方程的空间导数,同时使用向前差分近似其一阶时间导数,求出其数值解。最后将所得结果与4阶龙格库塔法和蛙跳格式所得数值解进行对比分析,结果表明3次B样条拟插值方法具有一定的优越性。

关键词: B样条, 样条拟插值, 圣维南方程, 偏微分方程数值解

Abstract: Firstly,the error estimates of cubic spline quasi-intepolating operators are derived for continuous differential function with different orders.Secondly,cubic B-spline quasi-interpolation is used to get the numerical solution of Saint-Venant equation.Specifically,the derivatives of the quasi-interpolation are used to approximate the spatial derivative of the dependent variable and forward difference method is used to approximate the time derivative of the dependent variable.Finally,the numerical solutions are compared with the solution obtained by the fourth order Runge-Kutta method and the leapfrog scheme.Then numerical examples show that cubic spline quasi-intepolating method has some advantages.

Key words: B spline, Spline quasi-intepolation, Saint-Venant equation, Numerical solutions of partial differential equations

中图分类号: 

  • O241.82
[1]WANG R H,LI C J,ZHU C G.Computational geometry Tuto-rial[M].Beijing:Science Press,2008:6-221.
[2]WANG R H.Multivariate spline function and its application[M].Beijing:Science Press,1994:1-455.
[3]WANG R H,LU Y.Quasi-interpolating operators and their applications in hypersingular integrals[J].Journal of Computa-tional Mathematics,1998,16(4):337-344.
[4]WANG R H,LU Y.Quasi-interpolating operators in S12(2)mn) on nonuniform type-2 triangulations[J].Numerical Mathmaties A Journal of Chinese Universities,1999,(2):97-103.
[5]QIAN J,WANG R H,ZHU C G,et al.On spline quasi-interpolation in cubic spline space S12(2)mn)[J].Scientia Sinica(Mathe-matica),2014,44(7):769-778.
[6]QIAN J,WANG F.On the Approximation of the Derivatives of Spline Quasi-Interpolation in Cubic Spline Space S12(2)mn)[J].Numerical Mathematics-theory Methods And Applications,2014,7(1):1-22.
[7]PAUL S.Univariate spline quasi-interpolants and applications to numerical analysis[J].Mathematics,2005,63(3):211-222.
[8]ZHU C G,WANG R H.Numerical solution of Burgers’ equation by cubic B-spline quasi-interpolation[J].Applied Mathematics and Computation,2009,208(1):260-272.
[9]ZHU C G,KANG W S.Numerical solution of Burgers-Fisherequation by cubic B-spline quasi-interpolation[J].Applied Ma-thematics and Computation,2010,216(9):2679-2686.
[10]AMINIKHAH H,ALAVI J.Applying Cubic B-Spline Quasi-Interpolation to Solve 1D Wave Equations in Polar Coordinates[J].ISRN Computational Mathematics,2013,2013:1-8.
[11]KUMAR R,BASKAR S.B-spline quasi-interpolation based numerical methods for some Sobolev type equations[J].Journal of Computational and Applied Mathematics,2016,292(C):41-66.
[12]ZHANG J H,ZHENG J S,GAO Q J.Numerical solution of the Degasperis-Procesi equation by the cubic B-spline quasi-interpolation method[J].Applied Mathematics & Computation,2018,324:218-227.
[13]BOUHIRI S,LAMNII A,LAMNII M.Cubic quasi-interpolation spline collocation method for solving convection-diffusion equations[J].Mathematics & Computers in Simulation,2019,164:33-45.
[14]SUN L Y,ZHU C G.Cubic B-spline quasi-interpolation and anapplication to numerical solution of generalized Burgers-Huxley equation[J].Advances in Mechanical Engineering,2020,12(11):1-8.
[15]QI Z X,QIAN J.Quartic B-spline methods for numerical solutions convective-diffusion equations[J].Journal of Graphics,2020,41(5):716-724.
[16]MITTAL R C,KUMAR S,JIWARI R.A cubic B-spline quasi-interpolation method for solving two-dimensional unsteady advection diffusion equations[J].International Journal of Numerical Methods for Heat & Fluid Flow,2020,30(9):4281-4306.
[17]WANG D G.Computational hydraulics theory and application[M].Nanjing:Hohai University Press,1989:1-327.
[18]CROSSLEY A J.Accurate and efficient numerical solutions for the Saint Venant equations of open channel flow[D].Nottingham:University of Nottingham,1999.
[19]STEPIEN I.On the numerical solution of the saint-venant equations[J].Journal of Hydrology,1984,67(1):1-11.
[20]MOLLS T,MOLLS F.Space-Time Conservation Method Ap-plied to Saint Venant Equations[J].Journal of Hydraulic Engineering(New York),1998,124(5):501-508.
[21]LAI W,KHAN A A.Numerical solution of the Saint-Venantequations by an efficient hybrid finite volume/finite-difference method[J].Journal of Hydrodynamics,2018,30(2):189-202.
[22]FAUZI R,HARI WIRYANTO L.Predictor-corrector schemefor simulating wave propagation on shallow water region[J].IOP Conference Series:Earth and Environmental Science,2018,162(1):012047.
[23]ASKARI K O A,Shayannejad M,Eslamian S.Comparison of solutions of Saint-Venant equations by characteristics and finite difference methods for unsteady flow analysis in open channel[J].International Journal of Hydrology Science and Technology,2018,8(3):229-243.
[24]SUKRON M,HABIBAH U,HIDAYAT N.Numerical solution of Saint-Venant equation using Runge-Kutta fourth-order me-thod[J].Journal of Physics:Conference Series,2021,1872(1):012036.
[25]ZHENG C D,BAI F PENG,YANG Z H.An improved method for solving saint-venant equations in conservation form with irregular cross-section shapes[J].Water Resources and Power,2017,35(12):95-99,103.
[26]WANG H H,GUAN G H,XIAO C C.Comparison and Optimization of Sparse Matrix Solution Methods in One-dimensional Saint-venant Equation Difference Numerical Algorithm[J].Journal of Irrigation and Drainage,2021,40(3):116-124.
[1] 王华.
一种基于叶脉形状函数的叶片形态模拟改进方法
Improved Method for Blade Shape Simulation Based on Vein Shape Function
计算机科学, 2019, 46(6A): 234-238.
[2] 孙金, 孙长乐, 关广丰.
基于二维工程图的三维CAD模型自动构建方法
Method of Automatic Construction of 3D CAD Model Based on 2D Engineering Sketch
计算机科学, 2019, 46(11A): 42-46.
[3] 李照宏,郑红婵,廉慧芬,金明娅.
可再生混合高阶指数多项式的插值细分法
Interpolatory Subdivision Schemes for Mixed Higher-order Exponential Polynomials Reproduction
计算机科学, 2018, 45(3): 51-57. https://doi.org/10.11896/j.issn.1002-137X.2018.03.008
[4] 刘哲,宋余庆,包翔.
基于邻域信息的B样条密度模型的医学图像分割研究
Medical Image Segmentation Based on Non-parametric B-spline Density Model with Spatial Information
计算机科学, 2014, 41(12): 293-296. https://doi.org/10.11896/j.issn.1002-137X.2014.12.063
[5] 王静文,刘弘.
基于面积约束的大豆叶片三维建模方法
Three-dimensional Modeling of Soybean Leaf Based on Area Constraint
计算机科学, 2013, 40(10): 301-304.
[6] 石茂,康宝生,叶正麟,白鸿武.
参数曲线曲面降阶研究
Research on Degree Reduction of Parameters Curves and Surfaces
计算机科学, 2010, 37(10): 233-238.
[7] 朱庆生,曾令秋,屈洪春,刘骥.
基于粒子群算法的B样条曲线拟合
Curve Fitting of B-spline Based on Particle Swarm Optimization
计算机科学, 2009, 36(10): 289-291.
[8] 赵颜利 郭成昊 刘凤玉.
带形状参数的指数均匀B样条模型

计算机科学, 2008, 35(2): 238-241.
[9] 周文利.
基于B样条曲线的植物模型建立方法

计算机科学, 2007, 34(6): 245-247.
[10] .
一种新的均匀样条曲线曲面设计方法

计算机科学, 2006, 33(9): 225-228.
[11] .
基于CB样条曲线的空间物体三维重建

计算机科学, 2006, 33(5): 247-249.
[12] 雷开彬.
有理B样条曲线的端点性质及形状控制方法

计算机科学, 1999, 26(11): 79-81.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!