计算机科学 ›› 2023, Vol. 50 ›› Issue (6A): 220600212-7.doi: 10.11896/jsjkx.220600212
王冬丽1, 杨珊1, 欧阳万里2, 李抱朴3, 周彦1
WANG Dongli1, YANG Shan1, OUYANG Wanli2, LI Baopu3, ZHOU Yan1
摘要: 近年来人工智能在诸多领域和学科中的广泛应用展现出了其卓越的性能,这种性能的提升通常需要牺牲模型的透明度来获取。然而,人工智能模型的复杂性和黑盒性质已成为其应用于高风险领域最主要的瓶颈,这严重阻碍了人工智能在特定领域的进一步应用。因此,亟需提高模型的可解释性,以证明其可靠性。为此,从机器学习模型可解释性、深度学习模型可解释性、混合模型可解释性3个方面对人工智能可解释性研究的典型模型和方法进行了介绍,进一步讲述了可解释人工智能在教学分析、司法判案、医疗诊断3个领域的应用情况,并对现有可解释方法存在的不足进行总结与分析,提出人工智能可解释性未来的发展趋势,希望进一步推动可解释性研究的发展与应用。
中图分类号:
[1]CHAO L M,YIN X L.AI Governance and System:Current Si-tuation and Trend[J].Computer Science,2021,48(9):1-8. [2]HUA Y Y,ZHANG D C,GE S M.Research Progress in the Interpretability of Deep Learning Models[J].Journal of Cyber Security,2020,5(3):1-12. [3]KONG X W,TANG X Z,WANG Z M.A Survey of Explainable Artificial Intelligence Decision[J].Systems Engineering-Theory &Practice,2021,41(2):524-53. [4]ZENG C Y,YANK,WANG Z F,et al.Survey of Interpretability Research on Deep Learning Models[J].Computer Engineering and Applications,2021,57(8):1-9. [5]ALAIN G,BENGIO Y.Understanding intermediate layers using linear classifier probes[J].arXiv:1610.01644,2016. [6]WANG C,SHI Y,FAN X,et al.Attribute Reduction Based on K-nearest Neighborhood Rough Sets[J].International Journal of Approximate Reasoning,2019,106:18-31. [7]ZHENG S,DING C.A Group Lasso Based Sparse KNN Classifier[J].Pattern Recognition Letters,2020,131:227-233. [8]ZHOU Z J,CAO Y,HU C H,et al.The Interpretability of Rule-based Modeling Approach and Its Development[J].Acta Automatica Sinica,2021,47(6):1201-1216. [9]RIBEIRO M T,SINGH S,GUESTRIN C." Why should i trust you?" Explaining the Predictions of Any Classifier[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2016:1135-1144. [10]GUO W B,XU J.Using Lemna to Explain the Application ofDeep Learning in Network Security(Part I)[J].China Education Network,2019(z1):40-43. [11]SETZU M,GUIDOTTI R,MONREALE A,et al.Glocalx-from Local to Global Explanations of Black Box AI Models[J].Artificial Intelligence,2021,294:103457. [12]HINTON G,VINYALS O,DEAN J.Distilling the Knowledgein A Neural Network[J].Computer Science,2015,14(7):38-39. [13]ZHAO L,PENG X,CHEN Y,et al.Knowledge as Priors:Cross-modal Knowledge Generalization for Datasets without Superior Knowledge[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:6528-6537. [14]SPRINGENBERG J T,DOSOVITSKIY A,BROX T,et al.Striving for simplicity:The all convolutional net[C]//Proceedings of 3rd ICLR(Workshop Track).2015. [15]SUNDARARAJAN M,TALY A,YAN Q.Axiomatic Attribution for Deep Networks[C]//International Conference on Machine Learning.PMLR,2017:3319-3328. [16]SMILKOV D,THORAT N,KIM B,et al.Smoothgrad:removing noise by adding noise[C]//ICML Workshop on Visualization for Deep Learning.2017. [17]ZHOU B,KHOSLA A,LAPEDRIZA A,et al.Learning Deep Features for Discriminative Localization[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:2921-2929. [18]SELVARAJU R R, COGSWELL M, DAS A,et al.Grad-CAM:Visual Explanations from Deep Networks via Gradient-based Localization[J].International Journal of Computer Vision,2020,128(2):336-359. [19]CHATTOPADHAY A,SARKAR A,HOWLADER P,et al.Grad-cam++:Generalized gradient-based visual explanations for deep convolutional networks[C]//IEEE Winter Conference on Applications of Computer Vision.2018:839-847. [20]BINDER A,MONTAVON G,LAPUSCHKIN S,et al.Layer-wise relevance propagation for neural networks with local renormalization layers[C]//International Conference on Artificial Neural Networks.2016:63-71. [21]SHRIKUMAR A,GREENSIDE P,KUNDAJE A.Learning important features through propagating activation differences[C]//International Conference on Machine Learning.PMLR,2017:3145-3153. [22]DU M,LIU N,SONG Q,et al.Towards explanation of dnn-based prediction with guided feature inversion[C]//Proceedings of the 24th ACM SIGKDD International Conference on Know-ledge Discovery & Data Mining.2018:1358-1367. [23]ELSHAWI R,SHERIFY,AL-MALLAH M,et al.ILIME:Local and global interpretable model-agnostic explainer of black-box decision[C]//European Conference on Advances in Databases and Information Systems.Cham:Springer,2019:53-68. [24]LIN Z,FENG M,SANTOS C N D,et al.A structured self-attentive sentence embedding[C]//Proceedings of the 5th International Conference on Learning Representations.Toulon,France,2017:1-15. [25]GALASSI A,LIPPI M,TORRONI P.Attention,please! a critical review of neural attention models in natural language processing[J].arXiv:1902.02181,2019. [26]DEVLIN J,CHANG M W,LEE K,et al.Bert:Pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.2019:4171-4186. [27]HU J,SHEN L,ALBANIE S,et al.Squeeze-and-excitation networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2019,42(8):2011-2023. [28]DOSOVITSKIY A,BEYER L,KOLESNIKOV A,et al.Animage is worth 16x16 words:Transformers for image recognition at scale[C]//Proceedings of the 9th International Confe-rence on Learning Representations.2021. [29]LUNDBERG S M,LEE S I.A unified approach to interpreting model predictions[J].Advances in Neural Information Proces-sing Systems,2017,30. [30]LUNDBERG S M,ERION G,CHEN H,et al.From local explanations to global understanding with explainable AI for trees[J].Nature Machine Intelligence,2020,2(1):56-67. [31]HU Z T,MA X Z,LIU Z Z,et al.Harnessing deep neural networks with logic rules[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics(Vo-lume 1:Long Papers).2016:2410-2420. [32]WANG T,LIN Q.Hybrid predictive models:when an interpretable model collaborates with a black-box model[J].Journal of Machine Learning Research,2021,22(137):1-38. [33]YEGANEJOU M,DICK S,MILLER J.Interpretable deep convo-lutional fuzzy classifier[J].IEEE Transactions on Fuzzy Systems,2019,28(7):1407-1419. [34]WANG S X.AI Empowerment Education[J]China education network,2021(1):15. [35]HASIB K M,RAHMAN F,HASNAT R,et al.A machinelearning and explainable AI approach for predicting secondary school student performance[C]//2022 IEEE 12thAnnual Computing and Communication Workshop and Conference(CCWC).2022:399-405. [36]LI J,ZHANG G,YU L,et al.Research and design on cognitive computing framework for predicting judicial decisions[J].Journal of Signal Processing Systems,2019,91(10):1159-1167. [37]BAO Q,ZAN H,GONG P,et al.Charge prediction with legal attention[C]//CCF International Conference on Natural Language Processing and Chinese Computing.Cham:Springer,2019:447-458. [38]SOARES E,ANGELOV P,BIASO S,et al.SARS-CoV-2 CT-scan dataset:A large dataset of real patients CT scans for SARS-CoV-2 identification[J].MedRxiv,2020. [39]COUTEAUX V,NEMPONT O,PIZAINE G,et al.Towards interpretability of segmentation networks by analyzing Deep-Dreams[M]//Interpretability of machine intelligencein medical image computing and multimodal learning for clinical decision support.Cham:Springer,2019:56-63. [40]BIEN J,TIBSHIRANI R.Prototype selection for interpretableclassification[J].The Annals of Applied Statistics,2011,5(4):2403-2424. |
|