计算机科学 ›› 2023, Vol. 50 ›› Issue (6A): 220500038-7.doi: 10.11896/jsjkx.220500038
喻九阳, 张德安, 戴耀南, 胡天豪, 夏文凤
YU Jiuyang, ZHANG Dean, DAI Yaonan, HU Tianhao, XIA Wenfeng
摘要: 在移动机器人运动路径规划领域,渐近最优双向快速探索随机树(B-RRT*)算法虽然具有良好的避障和路径搜索能力,但是存在迭代次数多、规划时间长的缺点。基于运动学约束的双向快速探索随机树(KB-RRT)算法作为B-RRT*算法的高效分支,虽然有效减少了无效树的扩展,加快了寻找最优路径的速度,但迭代次数过大。针对B-RRT*算法的最新改进算法是具有高效分支的运动学约束B-RRT*(KB-RRT*)算法,KB-RRT*算法虽然可以有效减少无效树的扩展,加快寻找最优路径的速度,但其迭代次数仍然过大。因此,提出了一种基于自适应采样和快速搜索的改进B-RRT*算法(AFB-RRT*)。该算法设定障碍物的安全区域,根据提出的自适应采样和快速搜索确定随机树的搜索方向,减少冗余采样点,即AFB-RRT*在路径规划中可以实现快速收敛。仿真和实验表明,与KB-RRT*相比,AFB-RRT*在规划路径长度基本相同的前提下,减少了规划时间和收敛迭代次数。
中图分类号:
[1]LIU Y J,YU M J,YE P,et al.A review of path planning me-thods for self-reconfigurable modular robots[J].Science in China:Information Science,2018,48(2):143-176. [2]DONG Y,CAMCI E,KAYACAN E.Faster RRT-based non-holonomic path planning in 2D building environments using skeleton-constrained path biasing[J].Journal of Intelligent & Robotic Systems,2018,89(3):387-401. [3]MU X,LIU Y,GUO L,et al.Intelligent reflecting surface enhanced indoor robot path planning:A radio map-based approach[J].IEEE Transactions on Wireless Communications,2021,20(7):4732-4747. [4]DAS P K,JENA P K.Multi-robot path planning using improved particle swarm optimization algorithm through novel evolutiona-ry operators[J].Applied Soft Computing,2020,92:106312. [5]VOTION J,CAO Y.Diversity-based cooperative multivehiclepath planning for risk management in costmap environments[J].IEEE Transactions on Industrial Electronics,2018,66(8):6117-6127. [6]ZHANG Z,LU R,ZHAO M,et al.Robot path planning based on genetic algorithm with hybrid initialization method[J].Journal of Intelligent & Fuzzy Systems,2022,42(3):2041-2056. [7]YI G,FENG Z,MEI T,et al.Multi-AGVs path planning basedon improved ant colony algorithm[J].The Journal of Supercomputing,2019,75(9):5898-5913. [8]DAS P K,BEHERA H S,PANIGRAHI B K.A hybridization of an improved particle swarm optimization and gravitational search algorithm for multi-robot path planning[J].Swarm and Evolutionary Computation,2016,28:14-28. [9]WANG X,CHEN W,ZHAO J.The evolution of cooperationwith in the multigame environment based on the particle swarm optimization algorithm[J].Physics Letters A,2020,384(7):126165. [10]DEWANGAN R K,SHUKLA A,GODFREY W W.A solution for priority-based multi-robot path planning problem with obstacles using ant lion optimization[J].Modern Physics Letters B,2020,34(13):2050137. [11]HU B,CAO Z,ZHOU M C.An efficient RRT-based framework for planning short and smooth wheeled robot motion under kinodynamic constraints[J].IEEE Transactions on Industrial Electronics,2020,68(4):3292-3302. [12]LAVALLE S M,KUFFNER JRJ J.Randomized kinodynamic planning[J].The International Journal of Robotics Research,2001,20(5):378-400. [13]KARAMAN S,FRAZZOLI E.Sampling-based algorithms foroptimal motion planning[J].The International Journal of Robotics Research,2011,30(7):846-894. [14]QURESHI A H,AYAZ Y.Intelligent bidirectional rapidly-exploring random trees for optimal motion planning in complex cluttered environments[J].Robotics and Autonomous Systems,2015,68:1-11. [15]QI J,YANG H,SUN H.MOD-RRT*:A sampling-based algorithm for robot path planning in dynamic environment[J].IEEE Transactions on Industrial Electronics,2020,68(8):7244-7251. [16]JEONG I B,LEE S J,KIM J H.Quick-RRT*:Triangular inequality-based implementation of RRT* with improved initial solution and convergence rate[J].Expert Systems with Applications,2019,123:82-90. [17]LI Y,WEI W,GAO Y,et al.PQ-RRT*:An improved path planning algorithm for mobile robots[J].Expert systems with applications,2020,152:113425. [18]MOON C,CHUNG W.Kinodynamic planner dual-tree RRT(DT-RRT) for two-wheeled mobile robots using the rapidly exploring random tree[J].IEEE Transactions on Industrial Electronics,2014,62(2):1080-1090. [19]TAHIR Z,QURESHI A H,AYAZ Y,et al.Potentially guided bidirectionalized RRT* for fast optimal path planning in cluttered environments[J].Robotics and Autonomous Systems,2018,108:13-27. [20]WU X,XU L,ZHEN R,et al.Biased sampling potentiallyguided intelligent bidirectional RRT* algorithm for UAV path planning in 3D environment[J].Mathematical Problems in Engineering,2019,2019. [21]SHOME R,SOLOVEY K,DOBSONA,et al.dRRT*:Scalable and informed asymptotically-optimal multi-robot motion planning[J].Autonomous Robots,2020,44(3):443-467. [22]WANG J,LI B,MENGM Q H.Kinematic Constrained Bi-directional RRT with Efficient Branch Pruning for robot path planning[J].Expert Systems with Applications,2021,170:114541. [23]SUN Y,ZHANG C,LIU C.Collision-free and dynamically feasible trajectory planning for omnidirectional mobile robots using a novel B-spline based rapidly exploring random tree[J].International Journal of Advanced Robotic Systems,2021,18(3):17298814211016609. [24]WANG J,LU Y,YE L,et al.Efficient analysis-suitable T-spline fitting for freeform surface reconstruction and intelligent sampling[J].Precision Engineering,2020,66:417-428. [25]DELGADO R,YOU B J,HAN M,et al.Integration of ROS and RT tasks using message pipe mechanism on Xenomai for telepresence robot[J].Electronics Letters,2019,55(3):127-128. |
|