计算机科学 ›› 2023, Vol. 50 ›› Issue (6A): 220700137-7.doi: 10.11896/jsjkx.220700137
陈乔松1, 张羽1, 蒲柳1, 谭冲冲2, 邓欣1, 王进1, 孙开伟1, 欧阳卫华1
CHEN Qiaosong1, ZHANG Yu1, PU Liu1, TAN Chongchong2, DENG Xin1, WANG Jin1, SUN Kaiwei1, OUYANG Weihua1
摘要: 目前的语义分割卷积网络中,空间信息和细节信息随着卷积层的加深而逐渐丢失,造成物体边界和细小物体的分割效果不准确。同时,卷积的局部特征能力限制了网络获取有效的全局建模能力,造成物体内部分割混淆。针对这些问题,文中设计了基于边缘优化和全局建模的多路径语义分割算法。该算法提出了多路径邻近错位融合的网络,4条不同的分辨率路径邻近之间细节信息融会,高分辨率路径尾部与低分辨率路径首部间的语义信息交融,以此减少空间信息和细节信息的丢失。文中提出了自适应边缘特征模块得到边缘特征,融入网络中间层和深度监督层,增强边缘特征的表达能力和细小物体的分割效果,提出了Transformer全局特征模块,采用不同卷积进行下采样操作,缩短自注意力序列的长度,再融合通道信息与自注意力信息,从而获取有效的高层语义的全局信息。实验结果表明,在CamVid测试集和Cityscapes验证集上mIoU值分别达到76.2%和79.1%。
中图分类号:
[1]ZHAN Z Y,AN Y J,CUI W C.Image Threshold Segmentation Algorithms and Comparative Research[J].Information and Communication,2017(4):86-89. [2]LIANG Z X,WANG X B,HE T,et al.Research and implementation of instance segmentation and edge optimization algorithms[J].Journal of Graphics,2020,41(6):939-946. [3]ROTHER C,KOLMOGOROV V,BLAKE A."“GrabCut” interactive foreground extraction using iterated graph cuts[J].ACM Transactions on Graphics(TOG),2004,23(3):309-314. [4]CANNY J.A computational approach to edge detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1986(6):679-698. [5]LONG J,SHELHAMER E,DARRELL T.Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer vision and Pattern Recognition.2015:3431-3440. [6]WANG Y R,CHEN Q L,WU J J.Research on Image Semantic Segmentation for Complex Environments[J].Computer Science,2019,46(9):36-46. [7]RONNEBERGER O,FISCHER P,BROXT.U-net:Convolu-tional networks for biomedical image segmentation[C]//International Conference on Medical image computing and computer-assisted intervention.Cham:Springer,2015:234-241. [8]NOH H,HONG S,HAN B.Learning deconvolution network for semantic segmentation[C]//Proceedings of the IEEE International Conference on Computer Vision.2015:1520-1528. [9]BADRINARAYANAN V,KENDALL A,CIPOLLA R.Segnet:A deep convolutional encoder-decoder architecture for image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(12):2481-2495. [10]ZHAO H,SHI J,QI X,et al.Pyramid scene parsing network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:2881-2890. [11]CHEN L C,ZHU Y,PAPANDREOU G,et al.Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the European Conference on Computer Vision(ECCV).2018:801-818. [12]HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:7132-7141. [13]YU C,WANG J,PENGC,et al.Bisenet:Bilateral segmentation network for real-time semantic segmentation[C]//Proceedings of the European Conference on Computer Vision(ECCV).2018:325-341. [14]FU J,LIU J,TIAN H,et al.Dual attention network for scene segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:3146-3154. [15]HUANG Z,WANG X,HUANG L,et al.Ccnet:Criss-cross attention for semantic segmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2019:603-612. [16]VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[C]//Advances in Neural Information Processing systems.2017:5998-6008. [17]XIE E,WANG W,YU Z,et al.SegFormer:Simple and efficient design for semantic segmentation with transformers[J].Advances in Neural Information Processing Systems,2021,34:12077-12090. [18]SHRIVASTAVA A,GUPTA A,GIRSHICK R.Training re-gion-based object detectors with online hard example mining[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:761-769. [19]YU C,GAO C,WANG J,et al.Bisenet v2:Bilateral networkwith guided aggregation for real-time semantic segmentation[J].International Journal of Computer Vision,2021,129(11):3051-3068. [20]PENG C,ZHANG X,YU G,et al.Large kernel matters--im-prove semantic segmentation by global convolutional network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:4353-4361. [21]LIN G,MILAN A,SHEN C,et al.Refinenet:Multi-path refinement networks for high-resolution semantic segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition.2017:1925-1934. [22]LI H,XIONG P,FAN H,et al.Dfanet:Deep feature aggregation for real-time semantic segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:9522-9531. [23]POUDEL R P K,LIWICKI S,CIPOLLA R.Fast-scnn:Fast semantic segmentation network[J].arXiv:1902.04502,2019. [24]SUN K,ZHAO Y,JIANG B,et al.High-resolution representationfor learning pixels and regions[J].arXiv:1904.04514,2019. [25]BAI S,KOLTUN V,KOLTER J Z.Multiscale deep equilibrium models[J].Advances in Neural Information Processing Systems,2020,33:5238-5250. [26]ORSIC M,KRESO I,BEVANDICP,et al.In defense of pre-trained imagenet architectures for real-time semantic segmentation of road-driving images[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:12607-12616. [27]DING X,CHEN H,ZHANG X,et al.Repmlpnet:Hierarchical vision mlp with re-parameterized locality[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:578-587. [28]YURTKULU S C,AHIN Y H,UNAL G.Semantic segmentation with extended DeepLabv3 architecture[C]//2019 27th Signal Processing and Communications Applications Conference(SIU).IEEE,2019:1-4. [29]LI G,YUN I,KIM J,et al.Dabnet:Depth-wise asymmetric bottleneck for real-time semantic segmentation[J].arXiv:1907.11357,2019. |
|