计算机科学 ›› 2023, Vol. 50 ›› Issue (6A): 221100052-7.doi: 10.11896/jsjkx.221100052

• 软件&交叉 • 上一篇    下一篇

新能源汽车供应链的关键风险节点识别方法

杨小博1,2,3,4,5,6, 高海伟7, 刘天越1,2,3,4,5,6, 郭炳晖1,2,3,4,5,6   

  1. 1 北京航空航天大学数学科学学院数学信息与行为教育部重点实验室 北京 100191;
    2 北京航空航天大学人工智能研究院 北京 100191;
    3 软件开发环境国家重点实验室 北京 100191;
    4 未来区块链与隐私计算高精尖中心 北京100191;
    5 中关村实验室 北京 100094;
    6 鹏城实验室 广东 深圳 518055;
    7 北京交通大学机械与电子控制工程学院 北京 100044
  • 出版日期:2023-06-10 发布日期:2023-06-12
  • 通讯作者: 刘天越(liutianyue97@163.com)
  • 作者简介:(yangxb@buaa.edu.cn)
  • 基金资助:
    国家重点研发计划项目(2021ZD0201302);国家自然科学基金(U20B2053);广东省重点领域研发计划项目(2021B0101420003)

Key Risk Node Identification Methods in New Energy Vehicle Supply Chain

YANG Xiaobo1,2,3,4,5,6, GAO Haiwei7, LIU Tianyue1,2,3,4,5,6, GUO Binghui1,2,3,4,5,6   

  1. 1 Key Laboratory of Mathematics, lnformatics, Behavioral Semantics, School of Mathematical Sciences, Beihang University, Beijing 100191, China;
    2 Institute of Artificial Intelligence, Beihang University, Beijing 100191, China;
    3 State Key Laboratory of Software Development Enviroment,Beijing 100191,China;
    4 Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing,Beijing 100191,China;
    5 Zhongguancun Laboratory,Beijing 100094,China;
    6 Peng Cheng Laboratory,Shenzhen,Guangdong 518055,China;
    7 School of Mechanical,Electronic and Control Engineering,Beijing Jiaotong University,Beijing 100044,China
  • Online:2023-06-10 Published:2023-06-12
  • About author:YANG Xiaobo,born in 1994,Ph.D candidate,is a member of China Computer Federation.His main research interests include data science and complex networks. LIU Tianyue,born in 1997,Ph.D candidate,is a member of China Computer Federation.Her main research interests include supply chain finance and privacy computing.
  • Supported by:
    National Key R&D Program of China(2021ZD0201302),National Natural Science Foundation of China(U20B2053) and Key R&D Program of Guangdong Province,China(2021B0101420003).

摘要: 以在新能源汽车行业中具有典型分析价值的特斯拉和小鹏汽车的公开数据为对象,分别构建了供应链网络模型,并针对供应链网络结构关联特征开展多维度融合的风险传播关键节点识别方法研究。首先,引入网络中心性指标,分析计算得到了中心性指标下的关键节点企业。同时,考虑到汽车供应链风险系统性传播的特点,引入风险免疫传播模型对网络中影响系统性风险传播的关键节点进行判定。最后,对两个网络分别进行级联失效模型分析,选出级联失效模型下在失效发生时对网络影响较大的关键节点。通过多维度的关键节点分析,发现新能源汽车供应链网络中对风险传播有很强影响力的关键节点不仅包含传统意义上的电池等核心企业,而且包含了具有行业隐形冠军属性的配件企业。通过提出的结构和传播属性综合分析方法,可以很好地发现新能源汽车供应链网络中潜在的隐性关键风险控制节点,具有很好的实践应用价值。

关键词: 汽车供应链, 风险传播, 关键节点识别

Abstract: In this paper,the open data of Tesla and XPENG,which have typical analytical value in the new energy automobile industry,are respectively used to construct networksof supply chain.And the key node identification method of risk transmission based on multi-dimensional fusion is studied according to the structural correlation characteristics of the network of supply chain.Firstly,the network centrality characteristics are introduced to analyze and calculate the key node.At the same time,considering the characteristics of systemic risk transmission in supply chain of automotive,the risk immune transmission model is introduced to determine the key nodes.Finally,the cascading failure model of the two networks is analyzed respectively,and the key nodes that have strong impact on network failure are selected.Through multi-dimensional key node analysis,it is found that the key nodes with strong impact include not only core enterprises such as batteries in the traditional sense,but also accessory enterprises with invisible leading position.Therefore,through the comprehensive analysis method of structure and transmission attribute proposed in this paper,the potential hidden key risk control nodes in the network of supply chain of new energy vehicles can be well found,which has good practical application value.

Key words: Automobile supply chain, Risk transmission, Key node identification

中图分类号: 

  • O29
[1]GIANNAKIS M,PAPADOPOULOS T.Supply chainsustain-ability:A risk management approach[J].Int.J.Prod.Econ.,2016,171:455-470.
[2]HE L N,WANG G T,LIU J.Supply chain risk management based on hesitant fuzzy DEMATEL and house of risk[J].Computer Integrated Manufacturing Systems,2021,27(5):1459-1468.
[3]HAN S,XU X.NEV supply chain coordination and sustainability considering sales effort and risk aversion under the CVaR criterion[J/OL].PLoSONE 2018,13:e0199005.https://doi.org/10.1371/journal.pone.0199005.
[4]JIN L N,LU Y Y,XIE J Y,et al.Environment and economy analysis on entire life circle of new energy vehicles based on GREET model[J].Resources & Industries,2019,21(5):8.
[5]PAN M,ZHANG J T,CHEN X D,et al.Risk assessment in automobile supply chain based on neural network[J].Shanghai Management Science,2019,41(1):8.
[6]LI F,WU C H,ZHOU L,et al.A model integrating environmental concerns and supply risks for dynamic sustainable supplier selection and order allocation[J].Soft Computing,2021,25(1):535-549.
[7]COX A,SANDERSON J,WATSON G.Supply chains and power regimes:toward an analytic framework for managing extended networks of buyer and supplier relationships[J].Journal of Supply Chain Management,2006,37(2):28-35.
[8]BRUNETTI C,HARRIS J H,MANKAD S,et al.Interconnec-tedness in the interbank market[J].Journal of Financial Econo-mics,2019,133(2):520-538.
[9]WANG Y C,ZHANG F P.Modeling and analysis of under-load-based cascading failures in supply chain networks[J].Nonlinear Dynamics,2018,92(2):1-15.
[10]LI X L.Robustness of supply chain network considering cascading failure[D].Dalian:Dalian University of Technology,2019.
[11]CHEN H D,ZHU Z F,LIU D Z.Cascading failure detection method of supply chain based on importance of nodes[J].Prices Monthly,2022(8):87-94.
[12]TANG L,JING K,HE J,et al.Robustness of assembly supply chain networks by considering risk propagation and cascading failure[J].Physica A:Statistical Mechanics and its Applications,2016,459:129-139.
[13]ZHENG T Y,HE J J.Research on Robustness of Multi-level Supply Chain Network under Gravity Mode[J].Science Technology and Industry,2022,22(1):224-230.
[14]ZHOU Q,ZHU Z L,QI Y,et al.Optimization of cascading fai-lure on complex network based on NNIA[J].Physica A Statistical Mechanics and its Applications,2018,501:42-51.
[15]TAN X H,WANG Y,LI B Q,et al.A Research on the Load Redistribution Based on the Cascading Failure Model of Scale-free Network[J].Journal of Air Force Engineering University(Natural Science Edition), 2016,17(6):5.
[16]YANG K,ZHANG Z Y.The research on mechanism of supply chain network risk based on complex network theory[J].Journal of Systems Science and Mathematical Sciences,2013,33(10):1224-1232.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!