计算机科学 ›› 2023, Vol. 50 ›› Issue (6A): 220500046-5.doi: 10.11896/jsjkx.220500046

• 软件&交叉 • 上一篇    下一篇

基于机器学习的高空电磁脉冲环境快速计算方法

王锦锦, 程引会, 聂鑫, 刘政   

  1. 西北核技术研究所强脉冲辐射模拟与效应国家重点实验室 西安 710024
  • 出版日期:2023-06-10 发布日期:2023-06-12
  • 通讯作者: 王锦锦(wangjinjin@nint.ac.cn)
  • 作者简介:(wangjinjin@nint.ac.cn)

Fast Calculation Method of High-altitude Electromagnetic Pulse Environment Based on Machine Learning

WANG Jinjin, CHENG Yinhui, NIE Xin, LIU Zheng   

  1. State Key Laboratory of Intense Pulsed Radiation Simulation and Effect,Northwest Institute of Nuclear Technology,Xi’an 710024,China
  • Online:2023-06-10 Published:2023-06-12
  • About author:WANG Jinjin,born in 1989,postgra-duate.Her main research interests include electromagnetic pulse effect technology and machine learning.

摘要: 高空电磁脉冲环境计算为电磁脉冲效应技术研究和防护加固等提供环境基础。为了快速计算高空电磁脉冲环境参数及其分布,研究了一种物理计算方法与机器学习相结合的方法。该方法首先利用高空电磁脉冲的数值模拟方法计算出不同爆高、不同γ当量、空间不同位置的高空电磁脉冲离散数据,再使用机器学习中的神经网络方法建立多参数快速计算模型,最后根据建立的快速计算模型,并行批量计算一定范围内任意不同爆高、不同当量、空间不同位置地面附近的高空电磁脉冲环境参数,并快速计算推导高空电磁脉冲在地面附近的场分布。结果表明,该方法在保证计算精度的同时,可以极大加快计算速度,可以为高空电磁脉冲传导环境计算提供所需的大量入射场参数。

关键词: 高空电磁脉冲, 机器学习, 神经网络, 快速计算, 场分布

Abstract: The calculation of the environment of high altitude electromagnetic pulse is the basis of the electromagnetic pulse effect technology and the protection.In order to quickly calculate the high altitude electromagnetic pulse environment parameters and their distribution,a new method combining traditional calculation method with neural network method is proposed.Firstly,it calculates the HEMP discrete data with different explosive height,different equivalent and different position in space using the exis-ting method.Second,it establishes the fast multi-parameter calculation model using neural network based on these discrete data.Finally,this paper calculates the HEMP environment parameters of different explosive height,different equivalent and different position in space using the established model in parallel batch.The distribution of the high altitude electromagnetic pulse is also can be calculated quickly.Experimental results show that HEMP environment parameters and their distribution are accelerated using the fast method.It can provide a large number of incident field parameters for the calculation of high altitude electromagne-tic pulse conduction environment.

Key words: High-altitude electromagnetic pulse, Machine learning, Neural network, Fast calculation, Field distribution

中图分类号: 

  • TP18
[1]CHENG Y H,MA L,LI J X,et al.Frequency-domain method for determining HEMP standard waveform parameters[J].Modern Applied Physics,2014,5(2):135-139.
[2]WANG J G,NIU S L,ZHANG D H,et al.Altitude nu-clear explosion effect parameter book[M].Beijing:Atomic Energy Publishing House,2008:145-148.
[3]ALKHASAWNEH M S,TAY L T.A hybrid intelligent system integrating the cascade forward neural network with elman neural network[J].Arabian Journal for Science and Engineering,2018,43:6737-6749.
[4]HUNG S Y,LEE C Y,LIN Y L.Data science for delaminationprognosis and online batch learning in semiconductor Assembly Process[J].IEEE Transactions on Components,Packing and Manufacturing Technology,2020,10(2):314-324.
[5]KHADSE C B,CHAUDHARI M A,BORGHATE V B.Elec-tromagnetic compatibility estimator using scaled conjugate gradient backpropagation based artificial neural network[J].IEEE Transactions on Industrial Informatics,2017,13(3):1036-1045.
[6]CHEN H L,YE S Z,Modeling and Optimization of EMI Filter by Using Artificial Neural Network[J].IEEE Transactions on Electromagnetic Compatibility,2019,6(6):1979-1987.
[7]KUMAR R,SRIVASTAVA S,GUPTA J R P,et al.Comparative study of neural networks for dynamic nonlinear systems identification[J],Soft Computing,2019,23:101-114.
[8]HUANG J C,KO K,SHU M H,et al.Application and comparison of several machine learning algorithms and their integration models in regression problems[J].Neural Computing and Applications,2020,32:5461-5469.
[9]ZHANG W P,KUMAR M,LIU J Q.Multi-parameter online measurement IoT system based on BP neural network algorithm[J].Neural Computing and Applications,2019,31:8147-8155.
[10]GÜNE F,MAHOUTI P,DEMIREL S,et al.Cost-effectiveGRNN-based modeling of microwave transistors with a reduced number of measurements[J].International Journal of Numerical Modelling:Electronic Networks,Devices and Fields,2017,1:12.
[11]CHEN M.Matlab Neural Network and Exact Solution of Case[M].Beijing:Tsinghua University Press,2013:160-161.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!