计算机科学 ›› 2023, Vol. 50 ›› Issue (7): 137-142.doi: 10.11896/jsjkx.220500066

• 计算机图形学&多媒体 • 上一篇    下一篇

面向单一背景的改进RetinaNet目标检测方法研究

周波, 江佩峰, 段昶, 罗月童   

  1. 合肥工业大学计算机与信息学院 合肥 230601
    安全关键工业测控技术教育部工程研究中心 合肥 230009
  • 收稿日期:2022-05-07 修回日期:2022-10-14 出版日期:2023-07-15 发布日期:2023-07-05
  • 通讯作者: 罗月童(ytluo@hfut.edu.cn)
  • 作者简介:(zhoubo810707@hfut.edu.cn)
  • 基金资助:
    国家自然科学基金(61602146);国家重点基础研究发展计划(2017YFB1402200);安徽省科技攻关计划(1604d0802009)

Study on Single Background Object Detection Oriented Improved-RetinaNet Model and Its Application

ZHOU Bo, JIANG Peifeng, DUAN Chang, LUO Yuetong   

  1. School of Computer Science and Information Engineering,Hefei University of Technology,Hefei 230601,China
    Engineering Research Center of Safety Critical Industrial Measurement and Control Technology,Ministry of Education,Hefei 230009,China
  • Received:2022-05-07 Revised:2022-10-14 Online:2023-07-15 Published:2023-07-05
  • About author:ZHOU Bo,born in 1981,Ph.D,associate professor.His main research interests include digital terrain analysis and object detection.LUO Yuetong,born in 1978,Ph.D,professor.His main research interests include image processing and scientific visualization.
  • Supported by:
    National Natural Science Foundation of China(61602146),National Basic Research Program of China(2017YFB1402200)and Key Science and Technology Program of Anhui Province, China(1604d0802009).

摘要: 基于深度学习的目标检测算法在工业缺陷检测领域得到了充分推广与应用,但少有适用于工业检测场景中单一背景的算法。文中以工业检测场景中具有大量简单重复背景为出发点,对RetinaNet算法进行了如下改进:1)引入难负样本挖掘策略,减小了大量简单重复负样本对对模型拟合正样本的影响;2)设计了自适应忽略样本选择策略,避免与正样本交并比高的样本混入负样本而混淆模型训练;3)简化了RetinaNet的分类子网络,降低了模型改进后的过拟合风险。在公开的PCB缺失孔数据集及自建的LED气泡数据集上,相比RetinaNet算法,改进后的方法在召回率上分别提升了14.1%和1.8%,在精确率上分别提升了3.6%和0.4%,表明改进后的方法能显著提升单一背景下的目标检测水平。

关键词: 深度学习, RetinaNet, 自适应采样, 单一背景

Abstract: Object detection algorithms based on deep learning have been fully promoted and applied in the field of industrial defect detection,but few algorithms are suitable for single background in industrial detection scenarios.This paper takes the industrial detection scene with a large number of simple repeated backgrounds as the starting point,and makes the following improvements to the RetinaNet algorithm:1)introduce the difficult negative sample mining strategy to reduce the impact of a large number of simple repeated negative samples on the model fitting positive samples;2)an adaptive ignoring sample selection strategy is designed to avoid mixing samples with high intersection ratios of positive samples into negative samples to confuse model training;3)the classification sub-network of RetinaNet is simplified,and the risk of overfitting after model improvement is reduced.Compared with the RetinaNet algorithm,the improved method improves the recall rate by 14.1% and 1.8%,and the precision rate by 3.6% and 0.4% respectively on the public PCB missing hole dataset and the self-built LED bubble dataset,indicating that the improved method can significantly improve the level of object detection in a single background.

Key words: Deep learning, RetinaNet, Adaptive sampling, Single background

中图分类号: 

  • TP391
[1]REN S,HE K,GIRSHICK R,et al.Faster r-cnn:Towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems.2015:91-99.
[2]DAI J,LI Y,HE K,et al.R-fcn:Object detection via region-based fully convolutional networks[J].Advances in Neural Information Processing Systems,2016,29:379-387.
[3]BOCHKOVSKIY A,WANG C Y,LIAO H Y M.Yolov4:Optimal speed and accuracy of object detection[J].arXiv:2004.10934,2020.
[4]ZHU X,LYU S,WANG X,et al.TPH-YOLOv5:ImprovedYOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:2778-2788.
[5]GE Z,LIU S,WANG F,et al.Yolox:Exceeding yolo series in 2021[J].arXiv:2107.08430,2021.
[6]LIU W,ANGUELOV D,ERHAN D,et al.Ssd:Single shotmultibox detector[C]//European Conference on Computer Vision.Cham:Springer,2016:21-37.
[7]LIN T Y,GOYAL P,GIRSHICK R,et al.Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision.2017:2980-2988.
[8]LAW H,DENG J.Cornernet:Detecting objects as paired key-points[C]//Proceedings of the European Conference on Computer Vision(ECCV).2018:734-750.
[9]DUAN K,BAI S,XIE L,et al.Centernet:Keypoint triplets for object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2019:6569-6578.
[10]TIAN Z,SHEN C,CHEN H,et al.Fcos:Fully convolutional one-stage object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2019:9627-9636.
[11]LIU Z,LIN Y,CAO Y,et al.Swin transformer:Hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:10012-10022.
[12]ZHANG S,WEN L,BIAN X,et al.Single-shot refinement neural network for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:4203-4212.
[13]KONG T,SUN F,YAO A,et al.Ron:Reverse connection with objectness prior networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:5936-5944.
[14]ZHANG S,CHI C,YAO Y,et al.Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample Selection[J].arXiv:1912.02424,2019.
[15]HE K,ZHANG X,REN S,et al.Deep residual learning forimage recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778.
[16]LIN T Y,DOLLÁR P,GIRSHICK R,et al.Feature pyramidnetworks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:2117-2125.
[17]LONG J,SHELHAMER E,DARRELL T.Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2015:3431-3440.
[18]ZHANG S,BENENSON R,SCHIELE B.Citypersons:A diverse dataset for pedestrian detection[C]//Proceedings of the IEEE Conference on Computer Vision Andpattern Recognition.2017:3213-3221.
[19]ZHUGE Y.The Quest for Machine Learning[M].Beijing:Posts and Telecommunications Press,2018.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!